Privacy-preserving attribute-based keyword search in shared multi-owner setting
Ciphertext-Policy Attribute-Based Keyword Search (CP-ABKS) facilitates search queries and supports fine-grained access control over encrypted data in the cloud. However, prior CP-ABKS schemes were designed to support unshared multi-owner setting, and cannot be directly applied in the shared multi-ow...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sol_research/3163 https://ink.library.smu.edu.sg/context/sol_research/article/5121/viewcontent/Privacy_Preserving_Attribute_Based_Keyword_Search_av.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sol_research-5121 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sol_research-51212020-07-02T11:07:52Z Privacy-preserving attribute-based keyword search in shared multi-owner setting MIAO, Yibin LIU, Ximeng DENG, Robert H. DENG, Robert H. LI, Jjguo LI, Hongwei MA, Jianfeng Ciphertext-Policy Attribute-Based Keyword Search (CP-ABKS) facilitates search queries and supports fine-grained access control over encrypted data in the cloud. However, prior CP-ABKS schemes were designed to support unshared multi-owner setting, and cannot be directly applied in the shared multi-owner setting (where each record is accredited by a fixed number of data owners), without incurring high computational and storage costs. In addition, due to privacy concerns on access policies, most existing schemes are vulnerable to off-line keyword-guessing attacks if the keyword space is of polynomial size. Furthermore, it is difficult to identify malicious users who leak the secret keys when more than one data user has the same subset of attributes. In this paper, we present a privacy-preserving CP-ABKS system with hidden access policy in Shared Multi-owner setting (basic ABKS-SM system), and demonstrate how it is improved to support malicious user tracing (modified ABKS-SM system). We then prove that the proposed ABKS-SM systems achieve selective security and resist off-line keyword-guessing attack in the generic bilinear group model. We also evaluate their performance using real-world datasets. 2019-01-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sol_research/3163 info:doi/10.1109/TDSC.2019.2897675 https://ink.library.smu.edu.sg/context/sol_research/article/5121/viewcontent/Privacy_Preserving_Attribute_Based_Keyword_Search_av.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection Yong Pung How School Of Law eng Institutional Knowledge at Singapore Management University Access control Ciphertext-policy attribute-based encryption Encryption hidden access policy Hospitals Keyword search off-line keyword-guessing attack Privacy shared multi-owner setting user tracing Information Security |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Access control Ciphertext-policy attribute-based encryption Encryption hidden access policy Hospitals Keyword search off-line keyword-guessing attack Privacy shared multi-owner setting user tracing Information Security |
spellingShingle |
Access control Ciphertext-policy attribute-based encryption Encryption hidden access policy Hospitals Keyword search off-line keyword-guessing attack Privacy shared multi-owner setting user tracing Information Security MIAO, Yibin LIU, Ximeng DENG, Robert H. DENG, Robert H. LI, Jjguo LI, Hongwei MA, Jianfeng Privacy-preserving attribute-based keyword search in shared multi-owner setting |
description |
Ciphertext-Policy Attribute-Based Keyword Search (CP-ABKS) facilitates search queries and supports fine-grained access control over encrypted data in the cloud. However, prior CP-ABKS schemes were designed to support unshared multi-owner setting, and cannot be directly applied in the shared multi-owner setting (where each record is accredited by a fixed number of data owners), without incurring high computational and storage costs. In addition, due to privacy concerns on access policies, most existing schemes are vulnerable to off-line keyword-guessing attacks if the keyword space is of polynomial size. Furthermore, it is difficult to identify malicious users who leak the secret keys when more than one data user has the same subset of attributes. In this paper, we present a privacy-preserving CP-ABKS system with hidden access policy in Shared Multi-owner setting (basic ABKS-SM system), and demonstrate how it is improved to support malicious user tracing (modified ABKS-SM system). We then prove that the proposed ABKS-SM systems achieve selective security and resist off-line keyword-guessing attack in the generic bilinear group model. We also evaluate their performance using real-world datasets. |
format |
text |
author |
MIAO, Yibin LIU, Ximeng DENG, Robert H. DENG, Robert H. LI, Jjguo LI, Hongwei MA, Jianfeng |
author_facet |
MIAO, Yibin LIU, Ximeng DENG, Robert H. DENG, Robert H. LI, Jjguo LI, Hongwei MA, Jianfeng |
author_sort |
MIAO, Yibin |
title |
Privacy-preserving attribute-based keyword search in shared multi-owner setting |
title_short |
Privacy-preserving attribute-based keyword search in shared multi-owner setting |
title_full |
Privacy-preserving attribute-based keyword search in shared multi-owner setting |
title_fullStr |
Privacy-preserving attribute-based keyword search in shared multi-owner setting |
title_full_unstemmed |
Privacy-preserving attribute-based keyword search in shared multi-owner setting |
title_sort |
privacy-preserving attribute-based keyword search in shared multi-owner setting |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2019 |
url |
https://ink.library.smu.edu.sg/sol_research/3163 https://ink.library.smu.edu.sg/context/sol_research/article/5121/viewcontent/Privacy_Preserving_Attribute_Based_Keyword_Search_av.pdf |
_version_ |
1770575314101993472 |