Simulating subject communities in case law citation networks

We propose and evaluate generative models for case law citation networks that account for legal authority, subject relevance, and time decay. Since Common Law systems rely heavily on citations to precedent, case law citation networks present a special type of citation graph which existing models do...

Full description

Saved in:
Bibliographic Details
Main Author: SOH, Jerrold Tsin Howe
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2021
Subjects:
Law
Online Access:https://ink.library.smu.edu.sg/sol_research/3971
https://ink.library.smu.edu.sg/context/sol_research/article/5929/viewcontent/fphy_09_665563_pvoa_cc_by.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.sol_research-5929
record_format dspace
spelling sg-smu-ink.sol_research-59292022-09-19T05:07:45Z Simulating subject communities in case law citation networks SOH, Jerrold Tsin Howe We propose and evaluate generative models for case law citation networks that account for legal authority, subject relevance, and time decay. Since Common Law systems rely heavily on citations to precedent, case law citation networks present a special type of citation graph which existing models do not adequately reproduce. We describe a general framework for simulating node and edge generation processes in such networks, including a procedure for simulating case subjects, and experiment with four methods of modelling subject relevance: using subject similarity as linear features, as fitness coefficients, constraining the citable graph by subject, and computing subject-sensitive PageRank scores. Model properties are studied by simulation and compared against existing baselines. Promising approaches are then benchmarked against empirical networks from the United States and Singapore Supreme Courts. Our models better approximate the structural properties of both benchmarks, particularly in terms of subject structure. We show that differences in the approach for modelling subject relevance, as well as for normalizing attachment probabilities, produce significantly different network structures. Overall, using subject similarities as fitness coefficients in a sum-normalized attachment model provides the best approximation to both benchmarks. Our results shed light on the mechanics of legal citations as well as the community structure of case law citation networks. Researchers may use our models to simulate case law networks for other inquiries in legal network science. 2021-07-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sol_research/3971 info:doi/10.3389/fphy.2021.665563 https://ink.library.smu.edu.sg/context/sol_research/article/5929/viewcontent/fphy_09_665563_pvoa_cc_by.pdf http://creativecommons.org/licenses/by/4.0/ Research Collection Yong Pung How School Of Law eng Institutional Knowledge at Singapore Management University case law citation networks legal network science physics of law network modelling community detection Law Numerical Analysis and Scientific Computing Scholarly Communication
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic case law citation networks
legal network science
physics of law
network modelling
community detection
Law
Numerical Analysis and Scientific Computing
Scholarly Communication
spellingShingle case law citation networks
legal network science
physics of law
network modelling
community detection
Law
Numerical Analysis and Scientific Computing
Scholarly Communication
SOH, Jerrold Tsin Howe
Simulating subject communities in case law citation networks
description We propose and evaluate generative models for case law citation networks that account for legal authority, subject relevance, and time decay. Since Common Law systems rely heavily on citations to precedent, case law citation networks present a special type of citation graph which existing models do not adequately reproduce. We describe a general framework for simulating node and edge generation processes in such networks, including a procedure for simulating case subjects, and experiment with four methods of modelling subject relevance: using subject similarity as linear features, as fitness coefficients, constraining the citable graph by subject, and computing subject-sensitive PageRank scores. Model properties are studied by simulation and compared against existing baselines. Promising approaches are then benchmarked against empirical networks from the United States and Singapore Supreme Courts. Our models better approximate the structural properties of both benchmarks, particularly in terms of subject structure. We show that differences in the approach for modelling subject relevance, as well as for normalizing attachment probabilities, produce significantly different network structures. Overall, using subject similarities as fitness coefficients in a sum-normalized attachment model provides the best approximation to both benchmarks. Our results shed light on the mechanics of legal citations as well as the community structure of case law citation networks. Researchers may use our models to simulate case law networks for other inquiries in legal network science.
format text
author SOH, Jerrold Tsin Howe
author_facet SOH, Jerrold Tsin Howe
author_sort SOH, Jerrold Tsin Howe
title Simulating subject communities in case law citation networks
title_short Simulating subject communities in case law citation networks
title_full Simulating subject communities in case law citation networks
title_fullStr Simulating subject communities in case law citation networks
title_full_unstemmed Simulating subject communities in case law citation networks
title_sort simulating subject communities in case law citation networks
publisher Institutional Knowledge at Singapore Management University
publishDate 2021
url https://ink.library.smu.edu.sg/sol_research/3971
https://ink.library.smu.edu.sg/context/sol_research/article/5929/viewcontent/fphy_09_665563_pvoa_cc_by.pdf
_version_ 1770576281330515968