Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart

Rosiglitazone, a peroxisome proliferator-activated receptor γ agonist, has been used to treat type 2 diabetes. Despite debates regarding its cardioprotection, the effects of rosiglitazone on cardiac electrophysiology are still unclear. This study determined the effect of rosiglitazone on ventricular...

Full description

Saved in:
Bibliographic Details
Main Authors: Palee S., Weerateerangkul P., Surinkeaw S., Chattipakorn S., Chattipakorn N.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-79960699765&partnerID=40&md5=e9e031801fbf5b39d4096ac0b6ee3ca8
http://www.ncbi.nlm.nih.gov/pubmed/21666037
http://cmuir.cmu.ac.th/handle/6653943832/1044
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-1044
record_format dspace
spelling th-cmuir.6653943832-10442014-08-29T09:17:39Z Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart Palee S. Weerateerangkul P. Surinkeaw S. Chattipakorn S. Chattipakorn N. Rosiglitazone, a peroxisome proliferator-activated receptor γ agonist, has been used to treat type 2 diabetes. Despite debates regarding its cardioprotection, the effects of rosiglitazone on cardiac electrophysiology are still unclear. This study determined the effect of rosiglitazone on ventricular fibrillation (VF) incidence, VF threshold (VFT), defibrillation threshold (DFT) and mitochondrial function during ischaemia and reperfusion. Twenty-six pigs were used. In each pig, either rosiglitazone (1 mg kg-1) or normal saline solution was administered intravenously for 60 min. Then, the left anterior descending coronary artery was ligated for 60 min and released to promote reperfusion for 120 min. The cardiac electrophysiological parameters were determined at the beginning of the study and during the ischaemia and reperfusion periods. The heart was removed, and the area at risk and infarct size in each heart were determined. Cardiac mitochondria were isolated for determination of mitochondrial function. Rosiglitazone did not improve the DFT and VFT during the ischaemia-reperfusion period. In the rosiglitazone group, the VF incidence was increased (58versus10%) and the time to the first occurrence of VF was decreased (3 ± 2versus19 ± 1 min) in comparison to the vehicle group (P< 0.05). However, the infarct size related to the area at risk in the rosiglitazone group was significantly decreased (P< 0.05). In the cardiac mitochondria, rosiglitazone did not alter the level of production of reactive oxygen species and could not prevent mitochondrial membrane potential changes. Rosiglitazone increased the propensity for VF, and could neither increase defibrillation efficacy nor improve cardiac mitochondrial function. © 2011 The Authors. Journal compilation © 2011 The Physiological Society. 2014-08-29T09:17:39Z 2014-08-29T09:17:39Z 2011 Article 9580670 10.1113/expphysiol.2011.057885 EXPHE http://www.scopus.com/inward/record.url?eid=2-s2.0-79960699765&partnerID=40&md5=e9e031801fbf5b39d4096ac0b6ee3ca8 http://www.ncbi.nlm.nih.gov/pubmed/21666037 http://cmuir.cmu.ac.th/handle/6653943832/1044 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description Rosiglitazone, a peroxisome proliferator-activated receptor γ agonist, has been used to treat type 2 diabetes. Despite debates regarding its cardioprotection, the effects of rosiglitazone on cardiac electrophysiology are still unclear. This study determined the effect of rosiglitazone on ventricular fibrillation (VF) incidence, VF threshold (VFT), defibrillation threshold (DFT) and mitochondrial function during ischaemia and reperfusion. Twenty-six pigs were used. In each pig, either rosiglitazone (1 mg kg-1) or normal saline solution was administered intravenously for 60 min. Then, the left anterior descending coronary artery was ligated for 60 min and released to promote reperfusion for 120 min. The cardiac electrophysiological parameters were determined at the beginning of the study and during the ischaemia and reperfusion periods. The heart was removed, and the area at risk and infarct size in each heart were determined. Cardiac mitochondria were isolated for determination of mitochondrial function. Rosiglitazone did not improve the DFT and VFT during the ischaemia-reperfusion period. In the rosiglitazone group, the VF incidence was increased (58versus10%) and the time to the first occurrence of VF was decreased (3 ± 2versus19 ± 1 min) in comparison to the vehicle group (P< 0.05). However, the infarct size related to the area at risk in the rosiglitazone group was significantly decreased (P< 0.05). In the cardiac mitochondria, rosiglitazone did not alter the level of production of reactive oxygen species and could not prevent mitochondrial membrane potential changes. Rosiglitazone increased the propensity for VF, and could neither increase defibrillation efficacy nor improve cardiac mitochondrial function. © 2011 The Authors. Journal compilation © 2011 The Physiological Society.
format Article
author Palee S.
Weerateerangkul P.
Surinkeaw S.
Chattipakorn S.
Chattipakorn N.
spellingShingle Palee S.
Weerateerangkul P.
Surinkeaw S.
Chattipakorn S.
Chattipakorn N.
Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart
author_facet Palee S.
Weerateerangkul P.
Surinkeaw S.
Chattipakorn S.
Chattipakorn N.
author_sort Palee S.
title Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart
title_short Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart
title_full Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart
title_fullStr Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart
title_full_unstemmed Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart
title_sort effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-79960699765&partnerID=40&md5=e9e031801fbf5b39d4096ac0b6ee3ca8
http://www.ncbi.nlm.nih.gov/pubmed/21666037
http://cmuir.cmu.ac.th/handle/6653943832/1044
_version_ 1681419582878777344