Data quality in privacy preservation for associative classification
Privacy preserving has become an essential process for any data mining task. In general, data transformation is needed to ensure privacy preservation. Once the privacy is preserved, data quality issue must be addressed, i.e. the impact on data quality should be minimized. In this paper, k-Anonymizat...
Saved in:
Main Authors: | Harnsamut N., Natwichai J., Sun X., Li X. |
---|---|
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2014
|
在線閱讀: | http://www.scopus.com/inward/record.url?eid=2-s2.0-68749105788&partnerID=40&md5=d7ed1e9bef0f79792f8b3a5c5b108993 http://cmuir.cmu.ac.th/handle/6653943832/1370 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
語言: | English |
相似書籍
-
Data quality in privacy preservation for associative classification
由: Nattapon Harnsamut, et al.
出版: (2018) -
Privacy preservation for associative classification
由: Harnsamut,N., et al.
出版: (2015) -
A novel heuristic algorithm for privacy preserving of associative classification
由: Harnsamut N., et al.
出版: (2014) -
A novel heuristic algorithm for privacy preserving of associative classification
由: Nattapon Harnsamut, et al.
出版: (2018) -
Associative classification rules hiding for privacy preservation
由: Natwichai J., et al.
出版: (2014)