Thermo-fluid characterization of flue gas flows through a packed bed

Enhancement of thermal performance in an incinerator and flue gas treatment with a randomly packed bed of uniform spheres was investigated in a custom-made experimental facility and reported in the present paper. Pressure drop, temperature evolution and heat transfer characteristics were evaluated f...

全面介紹

Saved in:
書目詳細資料
Main Authors: Vorayos N., Tippayawong N., Thanapiyawanit B.
格式: Article
語言:English
出版: 2014
在線閱讀:http://www.scopus.com/inward/record.url?eid=2-s2.0-49249118533&partnerID=40&md5=11742149479ad5909dbb0207bed94fd9
http://cmuir.cmu.ac.th/handle/6653943832/1400
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Enhancement of thermal performance in an incinerator and flue gas treatment with a randomly packed bed of uniform spheres was investigated in a custom-made experimental facility and reported in the present paper. Pressure drop, temperature evolution and heat transfer characteristics were evaluated for a range of superficial velocities, Reynolds numbers and bed geometries. Results revealed that increases in both superficial velocity and bed thickness caused a rise in pressure drop across the packed bed in similar fashion to the Ergun equation but with different coefficients at low Reynolds number between 60-300. The two constants were empirically determined to be 68.5 and 4.95. It was also found that the packed bed affects axial temperature distribution from the incinerator chamber to stack. For the same heating rate, higher temperature was achieved in the chamber with the packed bed, and peak temperature was reached at a rate of 7-10% faster than that without the packed bed during the startup period. The downstream side of the thicker bed appeared to have lower temperature than the thinner bed for the same axial position, demonstrating less flue loss during the transient state. The incinerator chamber proved to have higher temperature rising rate and reached higher maximum temperature with the presence of the packed bed. © 2008 The Korean Society of Mechanical Engineers and Springer-Verlag GmbH.