DST index prediction using joint and dual unscented Kalman filter

This paper presents a short-term prediction of the disturbance storm time (DST) index using unscented Kalman filter. Joint and dual estimation methods are studied to examine an improvement of DST index prediction by estimating modal parameters and updating recursively. Comparison between these teach...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Kaewkham-Ai B., Harrison R.F.
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2014
الوصول للمادة أونلاين:http://www.scopus.com/inward/record.url?eid=2-s2.0-77954180429&partnerID=40&md5=e8d3c191f74a66105da17477e874244e
http://cmuir.cmu.ac.th/handle/6653943832/1427
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:This paper presents a short-term prediction of the disturbance storm time (DST) index using unscented Kalman filter. Joint and dual estimation methods are studied to examine an improvement of DST index prediction by estimating modal parameters and updating recursively. Comparison between these teachniquies and a fixed model parameter prediction are made in terms of root mean square error (rmse). It is found that joint and dual estimation methods give less rmse than state estimation alone for all DST range, whereas state estimation alone shows better performance than joint and dual estimation for DST below-80 nT.