Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor

Melatonin, a neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Previous studies have shown that melatonin could stimulate the proliferation of neural stem/progenitor cells (NS/PCs). Recent studies reported that the activities of m...

Full description

Saved in:
Bibliographic Details
Main Authors: Tocharus C., Puriboriboon Y., Junmanee T., Tocharus J., Ekthuwapranee K., Govitrapong P.
Format: Article
Language:English
Published: Elsevier Ltd 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-84903978045&partnerID=40&md5=09ddbe6664f116eb489c2126398e3dc6
http://cmuir.cmu.ac.th/handle/6653943832/1763
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-1763
record_format dspace
spelling th-cmuir.6653943832-17632014-08-30T02:00:05Z Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor Tocharus C. Puriboriboon Y. Junmanee T. Tocharus J. Ekthuwapranee K. Govitrapong P. Melatonin, a neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Previous studies have shown that melatonin could stimulate the proliferation of neural stem/progenitor cells (NS/PCs). Recent studies reported that the activities of mitogen-activated protein kinase (MAPK) of neural stem cells (NSCs) changed in response to the proliferative effect of melatonin. Therefore, the aim of the present study was to explore the proliferative mechanism mediated by melatonin on the adult rat hippocampal NS/PCs. Treatment with melatonin significantly increased the number of neurospheres in a concentration-dependent manner and up-regulated nestin protein. Pretreatment with luzindole, a melatonin receptor antagonist, and PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, prevented the increase in the number of neurospheres formed by the activation of melatonin. The levels of phospho-c-Raf and phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) increased when treated with melatonin. Pretreatment with luzindole or PD98059 prevented the melatonin-induced increase in these signaling molecules. The present results showed that melatonin could induce NS/PCs to proliferate by increasing phosphorylation of ERK1/2 and c-Raf through melatonin receptor. These results provide further evidence for a role of melatonin in promoting neurogenesis, adding to the remarkably pleiotropic nature of this neurohormone. This intrinsic modulator deserves further investigation to better understand its physiological and therapeutic implication. © 2014. 2014-08-30T02:00:05Z 2014-08-30T02:00:05Z 2014 Article 18737544 10.1016/j.neuroscience.2014.06.026 NRSCD http://www.scopus.com/inward/record.url?eid=2-s2.0-84903978045&partnerID=40&md5=09ddbe6664f116eb489c2126398e3dc6 http://cmuir.cmu.ac.th/handle/6653943832/1763 English Elsevier Ltd
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description Melatonin, a neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Previous studies have shown that melatonin could stimulate the proliferation of neural stem/progenitor cells (NS/PCs). Recent studies reported that the activities of mitogen-activated protein kinase (MAPK) of neural stem cells (NSCs) changed in response to the proliferative effect of melatonin. Therefore, the aim of the present study was to explore the proliferative mechanism mediated by melatonin on the adult rat hippocampal NS/PCs. Treatment with melatonin significantly increased the number of neurospheres in a concentration-dependent manner and up-regulated nestin protein. Pretreatment with luzindole, a melatonin receptor antagonist, and PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, prevented the increase in the number of neurospheres formed by the activation of melatonin. The levels of phospho-c-Raf and phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) increased when treated with melatonin. Pretreatment with luzindole or PD98059 prevented the melatonin-induced increase in these signaling molecules. The present results showed that melatonin could induce NS/PCs to proliferate by increasing phosphorylation of ERK1/2 and c-Raf through melatonin receptor. These results provide further evidence for a role of melatonin in promoting neurogenesis, adding to the remarkably pleiotropic nature of this neurohormone. This intrinsic modulator deserves further investigation to better understand its physiological and therapeutic implication. © 2014.
format Article
author Tocharus C.
Puriboriboon Y.
Junmanee T.
Tocharus J.
Ekthuwapranee K.
Govitrapong P.
spellingShingle Tocharus C.
Puriboriboon Y.
Junmanee T.
Tocharus J.
Ekthuwapranee K.
Govitrapong P.
Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor
author_facet Tocharus C.
Puriboriboon Y.
Junmanee T.
Tocharus J.
Ekthuwapranee K.
Govitrapong P.
author_sort Tocharus C.
title Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor
title_short Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor
title_full Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor
title_fullStr Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor
title_full_unstemmed Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor
title_sort melatonin enhances adult rat hippocampal progenitor cell proliferation via erk signaling pathway through melatonin receptor
publisher Elsevier Ltd
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-84903978045&partnerID=40&md5=09ddbe6664f116eb489c2126398e3dc6
http://cmuir.cmu.ac.th/handle/6653943832/1763
_version_ 1681419731196706816