The Aedes aegypti glutathione transferase family
In this report, we describe the glutathione transferase (GST) gene family in the dengue vector Aedes aegypti and suggest a novel role for a new class of mosquito GSTs. Twenty-six GST genes are present in Ae. aegypti, two of which are alternatively spliced to give a total of 29 transcripts for cytoso...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-34548261707&partnerID=40&md5=a12d13e68b5c0f817d3d41b1bd8b210b http://cmuir.cmu.ac.th/handle/6653943832/2133 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-2133 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-21332014-08-30T02:00:31Z The Aedes aegypti glutathione transferase family Lumjuan N. Stevenson B.J. Prapanthadara L.-a. Somboon P. Brophy P.M. Loftus B.J. Severson D.W. Ranson H. In this report, we describe the glutathione transferase (GST) gene family in the dengue vector Aedes aegypti and suggest a novel role for a new class of mosquito GSTs. Twenty-six GST genes are present in Ae. aegypti, two of which are alternatively spliced to give a total of 29 transcripts for cytosolic GSTs. The six classes identified in other insect species are all represented and, as in Anopheles gambiae, the majority of the mosquito GSTs belong to the insect-specific Delta and Epsilon classes with eight members each. Sixteen secure 1:1 orthologs were identified between GSTs in Ae. aegypti and An. gambiae, but only four of these have recognisable orthologs in Drosophila melanogaster. Three mosquito-specific GSTs were identified which did not belong to any previously recognised GST classes. One of these, GSTx2, has been previously implicated in conferring 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) resistance in Ae. aegypti from South America. However, we found no evidence for increased levels of this GST protein in DDT/pyrethroid-resistant populations from Thailand. Furthermore, we show that the recombinant GSTX2-2 protein is unable to metabolise DDT. Interestingly, GSTX2-2 showed an affinity for hematin, and this, together with the restricted distribution of this class to haematophagous insects, may indicate a role for these enzymes in protecting mosquitoes against heme toxicity during blood feeding. © 2007 Elsevier Ltd. All rights reserved. 2014-08-30T02:00:31Z 2014-08-30T02:00:31Z 2007 Article 09651748 10.1016/j.ibmb.2007.05.018 17785190 IBMBE http://www.scopus.com/inward/record.url?eid=2-s2.0-34548261707&partnerID=40&md5=a12d13e68b5c0f817d3d41b1bd8b210b http://cmuir.cmu.ac.th/handle/6653943832/2133 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
In this report, we describe the glutathione transferase (GST) gene family in the dengue vector Aedes aegypti and suggest a novel role for a new class of mosquito GSTs. Twenty-six GST genes are present in Ae. aegypti, two of which are alternatively spliced to give a total of 29 transcripts for cytosolic GSTs. The six classes identified in other insect species are all represented and, as in Anopheles gambiae, the majority of the mosquito GSTs belong to the insect-specific Delta and Epsilon classes with eight members each. Sixteen secure 1:1 orthologs were identified between GSTs in Ae. aegypti and An. gambiae, but only four of these have recognisable orthologs in Drosophila melanogaster. Three mosquito-specific GSTs were identified which did not belong to any previously recognised GST classes. One of these, GSTx2, has been previously implicated in conferring 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) resistance in Ae. aegypti from South America. However, we found no evidence for increased levels of this GST protein in DDT/pyrethroid-resistant populations from Thailand. Furthermore, we show that the recombinant GSTX2-2 protein is unable to metabolise DDT. Interestingly, GSTX2-2 showed an affinity for hematin, and this, together with the restricted distribution of this class to haematophagous insects, may indicate a role for these enzymes in protecting mosquitoes against heme toxicity during blood feeding. © 2007 Elsevier Ltd. All rights reserved. |
format |
Article |
author |
Lumjuan N. Stevenson B.J. Prapanthadara L.-a. Somboon P. Brophy P.M. Loftus B.J. Severson D.W. Ranson H. |
spellingShingle |
Lumjuan N. Stevenson B.J. Prapanthadara L.-a. Somboon P. Brophy P.M. Loftus B.J. Severson D.W. Ranson H. The Aedes aegypti glutathione transferase family |
author_facet |
Lumjuan N. Stevenson B.J. Prapanthadara L.-a. Somboon P. Brophy P.M. Loftus B.J. Severson D.W. Ranson H. |
author_sort |
Lumjuan N. |
title |
The Aedes aegypti glutathione transferase family |
title_short |
The Aedes aegypti glutathione transferase family |
title_full |
The Aedes aegypti glutathione transferase family |
title_fullStr |
The Aedes aegypti glutathione transferase family |
title_full_unstemmed |
The Aedes aegypti glutathione transferase family |
title_sort |
aedes aegypti glutathione transferase family |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-34548261707&partnerID=40&md5=a12d13e68b5c0f817d3d41b1bd8b210b http://cmuir.cmu.ac.th/handle/6653943832/2133 |
_version_ |
1681419801112608768 |