Composite iterative schemes for maximal monotone operators in reflexive Banach spaces

In this article, we introduce composite iterative schemes for finding a zero point of a finite family of maximal monotone operators in a reflexive Banach space. Then, we prove strong convergence theorems by using a shrinking projection method. Moreover, we also apply our results to a system of conve...

Full description

Saved in:
Bibliographic Details
Main Authors: Cholamjiak,P., Cho.,Y., Suantai,S.
Format: Article
Published: Springer Publishing Company 2015
Subjects:
Online Access:http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84861085380&origin=inward
http://cmuir.cmu.ac.th/handle/6653943832/38629
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-38629
record_format dspace
spelling th-cmuir.6653943832-386292015-06-16T07:53:41Z Composite iterative schemes for maximal monotone operators in reflexive Banach spaces Cholamjiak,P. Cho.,Y. Suantai,S. Geometry and Topology Applied Mathematics In this article, we introduce composite iterative schemes for finding a zero point of a finite family of maximal monotone operators in a reflexive Banach space. Then, we prove strong convergence theorems by using a shrinking projection method. Moreover, we also apply our results to a system of convex minimization problems in reflexive Banach spaces. © 2011 Cholamjiak et al; licensee Springer. 2015-06-16T07:53:41Z 2015-06-16T07:53:41Z 2011-01-01 Article 16871820 2-s2.0-84861085380 10.1186/1687-1812-2011-7 http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84861085380&origin=inward http://cmuir.cmu.ac.th/handle/6653943832/38629 Springer Publishing Company
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Geometry and Topology
Applied Mathematics
spellingShingle Geometry and Topology
Applied Mathematics
Cholamjiak,P.
Cho.,Y.
Suantai,S.
Composite iterative schemes for maximal monotone operators in reflexive Banach spaces
description In this article, we introduce composite iterative schemes for finding a zero point of a finite family of maximal monotone operators in a reflexive Banach space. Then, we prove strong convergence theorems by using a shrinking projection method. Moreover, we also apply our results to a system of convex minimization problems in reflexive Banach spaces. © 2011 Cholamjiak et al; licensee Springer.
format Article
author Cholamjiak,P.
Cho.,Y.
Suantai,S.
author_facet Cholamjiak,P.
Cho.,Y.
Suantai,S.
author_sort Cholamjiak,P.
title Composite iterative schemes for maximal monotone operators in reflexive Banach spaces
title_short Composite iterative schemes for maximal monotone operators in reflexive Banach spaces
title_full Composite iterative schemes for maximal monotone operators in reflexive Banach spaces
title_fullStr Composite iterative schemes for maximal monotone operators in reflexive Banach spaces
title_full_unstemmed Composite iterative schemes for maximal monotone operators in reflexive Banach spaces
title_sort composite iterative schemes for maximal monotone operators in reflexive banach spaces
publisher Springer Publishing Company
publishDate 2015
url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84861085380&origin=inward
http://cmuir.cmu.ac.th/handle/6653943832/38629
_version_ 1681421508272979968