Composite iterative schemes for maximal monotone operators in reflexive Banach spaces
In this article, we introduce composite iterative schemes for finding a zero point of a finite family of maximal monotone operators in a reflexive Banach space. Then, we prove strong convergence theorems by using a shrinking projection method. Moreover, we also apply our results to a system of conve...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Springer Publishing Company
2015
|
Subjects: | |
Online Access: | http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84861085380&origin=inward http://cmuir.cmu.ac.th/handle/6653943832/38629 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-38629 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-386292015-06-16T07:53:41Z Composite iterative schemes for maximal monotone operators in reflexive Banach spaces Cholamjiak,P. Cho.,Y. Suantai,S. Geometry and Topology Applied Mathematics In this article, we introduce composite iterative schemes for finding a zero point of a finite family of maximal monotone operators in a reflexive Banach space. Then, we prove strong convergence theorems by using a shrinking projection method. Moreover, we also apply our results to a system of convex minimization problems in reflexive Banach spaces. © 2011 Cholamjiak et al; licensee Springer. 2015-06-16T07:53:41Z 2015-06-16T07:53:41Z 2011-01-01 Article 16871820 2-s2.0-84861085380 10.1186/1687-1812-2011-7 http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84861085380&origin=inward http://cmuir.cmu.ac.th/handle/6653943832/38629 Springer Publishing Company |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Geometry and Topology Applied Mathematics |
spellingShingle |
Geometry and Topology Applied Mathematics Cholamjiak,P. Cho.,Y. Suantai,S. Composite iterative schemes for maximal monotone operators in reflexive Banach spaces |
description |
In this article, we introduce composite iterative schemes for finding a zero point of a finite family of maximal monotone operators in a reflexive Banach space. Then, we prove strong convergence theorems by using a shrinking projection method. Moreover, we also apply our results to a system of convex minimization problems in reflexive Banach spaces. © 2011 Cholamjiak et al; licensee Springer. |
format |
Article |
author |
Cholamjiak,P. Cho.,Y. Suantai,S. |
author_facet |
Cholamjiak,P. Cho.,Y. Suantai,S. |
author_sort |
Cholamjiak,P. |
title |
Composite iterative schemes for maximal monotone operators in reflexive Banach spaces |
title_short |
Composite iterative schemes for maximal monotone operators in reflexive Banach spaces |
title_full |
Composite iterative schemes for maximal monotone operators in reflexive Banach spaces |
title_fullStr |
Composite iterative schemes for maximal monotone operators in reflexive Banach spaces |
title_full_unstemmed |
Composite iterative schemes for maximal monotone operators in reflexive Banach spaces |
title_sort |
composite iterative schemes for maximal monotone operators in reflexive banach spaces |
publisher |
Springer Publishing Company |
publishDate |
2015 |
url |
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84861085380&origin=inward http://cmuir.cmu.ac.th/handle/6653943832/38629 |
_version_ |
1681421508272979968 |