Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with gauge functions

We first investigate strong convergence of the sequence generated by implicit and explicit viscosity approximation methods for a one-parameter nonexpansive semigroup in a real Banach space E which has a uniformly Gâteaux differentiable norm and admits the duality mapping j φ, where φ is a gauge func...

Full description

Saved in:
Bibliographic Details
Main Authors: Cholamjiak,P., Suantai,S.
Format: Article
Published: Springer Netherlands 2015
Subjects:
Online Access:http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84865136281&origin=inward
http://cmuir.cmu.ac.th/handle/6653943832/38636
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:We first investigate strong convergence of the sequence generated by implicit and explicit viscosity approximation methods for a one-parameter nonexpansive semigroup in a real Banach space E which has a uniformly Gâteaux differentiable norm and admits the duality mapping j φ, where φ is a gauge function on [0, ∞). The main results also improve and extend some known results concerning the normalized duality mapping in the literature. © 2011 Springer Science+Business Media, LLC.