Structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations
© 2017 Springer Science+Business Media, LLC The electronic properties of single-walled carbon nanotubes (SWCNTs) can be modified by deforming their structure under high pressure. The aim of this study was to use quantum calculations to investigate one such property, the energy band gap, in relation...
Saved in:
Main Authors: | , , , , |
---|---|
格式: | 雜誌 |
出版: |
2017
|
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85026847132&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/40182 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
id |
th-cmuir.6653943832-40182 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-401822017-09-28T04:08:11Z Structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations Thompho S. Saengsawang O. Rungrotmongkol T. Kungwan N. Hannongbua S. © 2017 Springer Science+Business Media, LLC The electronic properties of single-walled carbon nanotubes (SWCNTs) can be modified by deforming their structure under high pressure. The aim of this study was to use quantum calculations to investigate one such property, the energy band gap, in relation to molecular structures of armchair and zigzag SWCNTs of various sizes and shapes deformed by applied forces. To model the increase in pressure, the degree of flatness (η) of the SWCNTs was adjusted as the primary parameter. The calculations gave accurate C-C bond lengths of the SWCNTs in their distorted states; these distortions significantly affected the electronic properties, especially the energy band gap of the SWCNTs. These results may contribute to a more refined design of new nano-electronic devices. 2017-09-28T04:08:11Z 2017-09-28T04:08:11Z Journal 10400400 2-s2.0-85026847132 10.1007/s11224-017-0999-7 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85026847132&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/40182 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
description |
© 2017 Springer Science+Business Media, LLC The electronic properties of single-walled carbon nanotubes (SWCNTs) can be modified by deforming their structure under high pressure. The aim of this study was to use quantum calculations to investigate one such property, the energy band gap, in relation to molecular structures of armchair and zigzag SWCNTs of various sizes and shapes deformed by applied forces. To model the increase in pressure, the degree of flatness (η) of the SWCNTs was adjusted as the primary parameter. The calculations gave accurate C-C bond lengths of the SWCNTs in their distorted states; these distortions significantly affected the electronic properties, especially the energy band gap of the SWCNTs. These results may contribute to a more refined design of new nano-electronic devices. |
format |
Journal |
author |
Thompho S. Saengsawang O. Rungrotmongkol T. Kungwan N. Hannongbua S. |
spellingShingle |
Thompho S. Saengsawang O. Rungrotmongkol T. Kungwan N. Hannongbua S. Structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations |
author_facet |
Thompho S. Saengsawang O. Rungrotmongkol T. Kungwan N. Hannongbua S. |
author_sort |
Thompho S. |
title |
Structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations |
title_short |
Structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations |
title_full |
Structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations |
title_fullStr |
Structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations |
title_full_unstemmed |
Structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations |
title_sort |
structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations |
publishDate |
2017 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85026847132&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/40182 |
_version_ |
1681421762691072000 |