Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing

© 2017 Springer Science+Business Media, LLC Biodegradable blends of poly(l-lactide) (PLL) toughened with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer and compatibilized with a purpose-designed poly(l-lactide-co-caprolactone) (PLLCL) copolymer were prepared. Both 2-component (P...

Full description

Saved in:
Bibliographic Details
Main Authors: Suthapakti K., Molloy R., Punyodom W., Nalampang K., Leejarkpai T., Topham P., Tighe B.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85024500610&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/40273
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-40273
record_format dspace
spelling th-cmuir.6653943832-402732017-09-28T04:08:36Z Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing Suthapakti K. Molloy R. Punyodom W. Nalampang K. Leejarkpai T. Topham P. Tighe B. © 2017 Springer Science+Business Media, LLC Biodegradable blends of poly(l-lactide) (PLL) toughened with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer and compatibilized with a purpose-designed poly(l-lactide-co-caprolactone) (PLLCL) copolymer were prepared. Both 2-component (PLL/TPU) and 3-component (PLL/TPU/PLLCL) blends of various compositions were prepared by melt mixing, hot-pressed into thin films and their properties tested. The results showed that, although the TPU could toughen the PLL, the blends were immiscible leading to phase separation with the TPU domains distributed in the PLL matrix. However, addition of the PLLCL copolymer could partially compatibilize the blend by improving the interfacial adhesion between the two phases. Biodegradability testing showed that the blends were biodegradable and that the PLLCL copolymer could increase the rate of biodegradation under controlled composting conditions. The 3-component blend of composition PLL/TPU/PLLCL = 90/10/10 parts by weight was found to exhibit the best all-round properties. 2017-09-28T04:08:36Z 2017-09-28T04:08:36Z Journal 15662543 2-s2.0-85024500610 10.1007/s10924-017-1082-6 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85024500610&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/40273
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2017 Springer Science+Business Media, LLC Biodegradable blends of poly(l-lactide) (PLL) toughened with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer and compatibilized with a purpose-designed poly(l-lactide-co-caprolactone) (PLLCL) copolymer were prepared. Both 2-component (PLL/TPU) and 3-component (PLL/TPU/PLLCL) blends of various compositions were prepared by melt mixing, hot-pressed into thin films and their properties tested. The results showed that, although the TPU could toughen the PLL, the blends were immiscible leading to phase separation with the TPU domains distributed in the PLL matrix. However, addition of the PLLCL copolymer could partially compatibilize the blend by improving the interfacial adhesion between the two phases. Biodegradability testing showed that the blends were biodegradable and that the PLLCL copolymer could increase the rate of biodegradation under controlled composting conditions. The 3-component blend of composition PLL/TPU/PLLCL = 90/10/10 parts by weight was found to exhibit the best all-round properties.
format Journal
author Suthapakti K.
Molloy R.
Punyodom W.
Nalampang K.
Leejarkpai T.
Topham P.
Tighe B.
spellingShingle Suthapakti K.
Molloy R.
Punyodom W.
Nalampang K.
Leejarkpai T.
Topham P.
Tighe B.
Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing
author_facet Suthapakti K.
Molloy R.
Punyodom W.
Nalampang K.
Leejarkpai T.
Topham P.
Tighe B.
author_sort Suthapakti K.
title Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing
title_short Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing
title_full Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing
title_fullStr Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing
title_full_unstemmed Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing
title_sort biodegradable compatibilized poly(l-lactide)/thermoplastic polyurethane blends: design, preparation and property testing
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85024500610&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/40273
_version_ 1681421779387547648