On the Symbol-Pair Distance of Repeated-Root Constacyclic Codes of Prime Power Lengths*

IEEE Let p be a prime, and & #x03BB; be a nonzero element of the finite field Fpm. The & #x03BB;-constacyclic codes of length ps over Fpm are linearly ordered under set-theoretic inclusion, i.e., they are the ideals & #x027E8;(x & #x2212; & #x03BB;0)i & #x027E9;, 0 &...

Full description

Saved in:
Bibliographic Details
Main Authors: Dinh H., Nguyen B., Singh A., Sriboonchitta S.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028917637&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/40281
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:IEEE Let p be a prime, and & #x03BB; be a nonzero element of the finite field Fpm. The & #x03BB;-constacyclic codes of length ps over Fpm are linearly ordered under set-theoretic inclusion, i.e., they are the ideals & #x027E8;(x & #x2212; & #x03BB;0)i & #x027E9;, 0 & #x2264; i & #x2264; ps of the chain ring Fpm & #x005B;x & #x005D; / & #x027E8;xps & #x2212; & #x03BB; & #x027E9;. This structure is used to establish the symbol-pair distances of all such & #x03BB;-constacyclic codes. Among others, all MDS symbol-pair constacyclic codes of length ps are obtained.