Topological gyrogroups: Generalization of topological groups
© 2017 Elsevier B.V. Left Bol loops with the A ℓ -property or gyrogroups are generalization of groups which do not explicitly have associativity. In this work, we define topological gyrogroups and study some properties of them. In spite of having a weaker algebraic form, topological gyrogroups carry...
Saved in:
Main Author: | |
---|---|
Format: | Journal |
Published: |
2017
|
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85026319672&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/40355 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | © 2017 Elsevier B.V. Left Bol loops with the A ℓ -property or gyrogroups are generalization of groups which do not explicitly have associativity. In this work, we define topological gyrogroups and study some properties of them. In spite of having a weaker algebraic form, topological gyrogroups carry almost the same basic properties owned by topological groups. In particular, we prove that being T 0 and T 3 are equivalent in topological gyrogroups. Furthermore, a topological gyrogroup is first countable if and only if it is premetrizable. Finally, a direct product of topological gyrogroups is a topological gyrogroup. |
---|