Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk

© 2016, Springer International Publishing. Möbius addition is defined on the complex open unit disk by (Formula presented.) and Möbius’s exponential equation takes the form L(a⊕ M b) = L(a) L(b) , where L is a complex-valued function defined on the complex unit disk. In the present article, we indi...

Full description

Saved in:
Bibliographic Details
Main Authors: Suksumran T., Wiboonton K.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006489520&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/40397
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-40397
record_format dspace
spelling th-cmuir.6653943832-403972017-09-28T04:09:21Z Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk Suksumran T. Wiboonton K. © 2016, Springer International Publishing. Möbius addition is defined on the complex open unit disk by (Formula presented.) and Möbius’s exponential equation takes the form L(a⊕ M b) = L(a) L(b) , where L is a complex-valued function defined on the complex unit disk. In the present article, we indicate how Möbius’s exponential equation is connected to Cauchy’s exponential equation. Möbius’s exponential equation arises when one determines the irreducible linear representations of the unit disk equipped with Möbius addition, considered as a nonassociative group-like structure. This suggests studying Schur’s lemma in a more general setting. 2017-09-28T04:09:21Z 2017-09-28T04:09:21Z 3 Journal 00019054 2-s2.0-85006489520 10.1007/s00010-016-0452-9 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006489520&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/40397
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2016, Springer International Publishing. Möbius addition is defined on the complex open unit disk by (Formula presented.) and Möbius’s exponential equation takes the form L(a⊕ M b) = L(a) L(b) , where L is a complex-valued function defined on the complex unit disk. In the present article, we indicate how Möbius’s exponential equation is connected to Cauchy’s exponential equation. Möbius’s exponential equation arises when one determines the irreducible linear representations of the unit disk equipped with Möbius addition, considered as a nonassociative group-like structure. This suggests studying Schur’s lemma in a more general setting.
format Journal
author Suksumran T.
Wiboonton K.
spellingShingle Suksumran T.
Wiboonton K.
Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
author_facet Suksumran T.
Wiboonton K.
author_sort Suksumran T.
title Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
title_short Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
title_full Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
title_fullStr Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
title_full_unstemmed Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
title_sort möbius’s functional equation and schur’s lemma with applications to the complex unit disk
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006489520&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/40397
_version_ 1681421802281107456