On constacyclic codes of length 4p<sup>s</sup> over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>

© 2016 Elsevier B.V. For any odd prime p such that p m ≡1(mod4), the structures of all λ-constacyclic codes of length 4p s over the finite commutative chain ring F p m +uF p m (u 2 =0) are established in terms of their generator polynomials. If the unit λ is a square, each λ-constacyclic code of le...

Full description

Saved in:
Bibliographic Details
Main Authors: Dinh H., Dhompongsa S., Sriboonchitta S.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008177631&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/40614
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-40614
record_format dspace
spelling th-cmuir.6653943832-406142017-09-28T04:10:28Z On constacyclic codes of length 4p<sup>s</sup> over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf> Dinh H. Dhompongsa S. Sriboonchitta S. © 2016 Elsevier B.V. For any odd prime p such that p m ≡1(mod4), the structures of all λ-constacyclic codes of length 4p s over the finite commutative chain ring F p m +uF p m (u 2 =0) are established in terms of their generator polynomials. If the unit λ is a square, each λ-constacyclic code of length 4p s is expressed as a direct sum of an −α-constacyclic code and an α-constacyclic code of length 2p s . In the main case that the unit λ is not a square, it is shown that any nonzero polynomial of degree < 4 over F p m is invertible in the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− λ〉. When the unit λ is of the form λ=α+uβ for nonzero elements α,β of F p m , it is obtained that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s−( α+ u β)〉 is a chain ring with maximal ideal 〈x 4 −α 0 〉, and so the (α+uβ)-constacyclic codes are 〈(x 4 −α 0 ) i 〉, for 0≤i≤2p s . For the remaining case, that the unit λ is not a square, and λ=γ for a nonzero element γ of F p m , it is proven that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− γ〉 is a local ring with the unique maximal ideal 〈x 4 −γ 0 ,u〉. Such λ-constacyclic codes are then classified into 4 distinct types of ideals, and the detailed structures of ideals in each type are provided. Among other results, the number of codewords, and the dual of each λ-constacyclic code are provided. 2017-09-28T04:10:28Z 2017-09-28T04:10:28Z 4 Journal 0012365X 2-s2.0-85008177631 10.1016/j.disc.2016.11.014 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008177631&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/40614
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2016 Elsevier B.V. For any odd prime p such that p m ≡1(mod4), the structures of all λ-constacyclic codes of length 4p s over the finite commutative chain ring F p m +uF p m (u 2 =0) are established in terms of their generator polynomials. If the unit λ is a square, each λ-constacyclic code of length 4p s is expressed as a direct sum of an −α-constacyclic code and an α-constacyclic code of length 2p s . In the main case that the unit λ is not a square, it is shown that any nonzero polynomial of degree < 4 over F p m is invertible in the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− λ〉. When the unit λ is of the form λ=α+uβ for nonzero elements α,β of F p m , it is obtained that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s−( α+ u β)〉 is a chain ring with maximal ideal 〈x 4 −α 0 〉, and so the (α+uβ)-constacyclic codes are 〈(x 4 −α 0 ) i 〉, for 0≤i≤2p s . For the remaining case, that the unit λ is not a square, and λ=γ for a nonzero element γ of F p m , it is proven that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− γ〉 is a local ring with the unique maximal ideal 〈x 4 −γ 0 ,u〉. Such λ-constacyclic codes are then classified into 4 distinct types of ideals, and the detailed structures of ideals in each type are provided. Among other results, the number of codewords, and the dual of each λ-constacyclic code are provided.
format Journal
author Dinh H.
Dhompongsa S.
Sriboonchitta S.
spellingShingle Dinh H.
Dhompongsa S.
Sriboonchitta S.
On constacyclic codes of length 4p<sup>s</sup> over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
author_facet Dinh H.
Dhompongsa S.
Sriboonchitta S.
author_sort Dinh H.
title On constacyclic codes of length 4p<sup>s</sup> over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
title_short On constacyclic codes of length 4p<sup>s</sup> over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
title_full On constacyclic codes of length 4p<sup>s</sup> over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
title_fullStr On constacyclic codes of length 4p<sup>s</sup> over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
title_full_unstemmed On constacyclic codes of length 4p<sup>s</sup> over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
title_sort on constacyclic codes of length 4p<sup>s</sup> over f<inf>p<sup>m</sup></inf>+uf<inf>p<sup>m</sup></inf>
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008177631&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/40614
_version_ 1681421850009141248