Estimation of induction motor states and parameters based on Extended Kalman Filter considering parameter constraints

© 2016 IEEE. The Extended Kalman Filter (EKF) has been applied to estimate states and parameters of an induction motor. For this application, sometimes, the parameters estimated by the filter may violate their physical ranges. To overcome this drawback, in this paper, motor's parameters constra...

Full description

Saved in:
Bibliographic Details
Main Authors: Laowanitwattana J., Uatrongjit S.
Format: Conference Proceeding
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994184670&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/41702
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-41702
record_format dspace
spelling th-cmuir.6653943832-417022017-09-28T04:22:53Z Estimation of induction motor states and parameters based on Extended Kalman Filter considering parameter constraints Laowanitwattana J. Uatrongjit S. © 2016 IEEE. The Extended Kalman Filter (EKF) has been applied to estimate states and parameters of an induction motor. For this application, sometimes, the parameters estimated by the filter may violate their physical ranges. To overcome this drawback, in this paper, motor's parameters constraints are incorporated into the EKF. The proposed technique modifies the EKF computation loop such that if any estimated parameter does not satisfy the physical constraints, the quadratic programming (QP) will be invoked to adjust the estimation. The proposed technique has been implemented in MATLAB environment and tested with the parameter data obtained from a 380 V, 50 Hz, 4 poles, 0.37 kW, squirrel cage induction motor. The numerical experimental results indicate that the proposed algorithm can improve estimation performance over the conventional EKF. 2017-09-28T04:22:53Z 2017-09-28T04:22:53Z 2016-07-28 Conference Proceeding 2-s2.0-84994184670 10.1109/SPEEDAM.2016.7525829 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994184670&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/41702
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2016 IEEE. The Extended Kalman Filter (EKF) has been applied to estimate states and parameters of an induction motor. For this application, sometimes, the parameters estimated by the filter may violate their physical ranges. To overcome this drawback, in this paper, motor's parameters constraints are incorporated into the EKF. The proposed technique modifies the EKF computation loop such that if any estimated parameter does not satisfy the physical constraints, the quadratic programming (QP) will be invoked to adjust the estimation. The proposed technique has been implemented in MATLAB environment and tested with the parameter data obtained from a 380 V, 50 Hz, 4 poles, 0.37 kW, squirrel cage induction motor. The numerical experimental results indicate that the proposed algorithm can improve estimation performance over the conventional EKF.
format Conference Proceeding
author Laowanitwattana J.
Uatrongjit S.
spellingShingle Laowanitwattana J.
Uatrongjit S.
Estimation of induction motor states and parameters based on Extended Kalman Filter considering parameter constraints
author_facet Laowanitwattana J.
Uatrongjit S.
author_sort Laowanitwattana J.
title Estimation of induction motor states and parameters based on Extended Kalman Filter considering parameter constraints
title_short Estimation of induction motor states and parameters based on Extended Kalman Filter considering parameter constraints
title_full Estimation of induction motor states and parameters based on Extended Kalman Filter considering parameter constraints
title_fullStr Estimation of induction motor states and parameters based on Extended Kalman Filter considering parameter constraints
title_full_unstemmed Estimation of induction motor states and parameters based on Extended Kalman Filter considering parameter constraints
title_sort estimation of induction motor states and parameters based on extended kalman filter considering parameter constraints
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994184670&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/41702
_version_ 1681422050876456960