Ellipsoidal support vector data description

© 2016 The Natural Computing Applications Forum This paper presents a data domain description formed by the minimum volume covering ellipsoid around a dataset, called “ellipsoidal support vector data description (eSVDD).” The method is analogous to support vector data description (SVDD), but instead...

Full description

Saved in:
Bibliographic Details
Main Authors: Teeyapan K., Theera-Umpon N., Auephanwiriyakul S.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84976607976&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/41868
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-41868
record_format dspace
spelling th-cmuir.6653943832-418682017-09-28T04:23:54Z Ellipsoidal support vector data description Teeyapan K. Theera-Umpon N. Auephanwiriyakul S. © 2016 The Natural Computing Applications Forum This paper presents a data domain description formed by the minimum volume covering ellipsoid around a dataset, called “ellipsoidal support vector data description (eSVDD).” The method is analogous to support vector data description (SVDD), but instead, with an ellipsoidal domain description allowing tighter space around the data. In eSVDD, a hyperellipsoid extends its ability to describe more complex data patterns by kernel methods. This is explicitly achieved by defining an “empirical feature map” to project the images of given samples to a higher-dimensional space. We compare the performance of the kernelized ellipsoid in one-class classification with SVDD using standard datasets. 2017-09-28T04:23:54Z 2017-09-28T04:23:54Z 2016-05-24 Journal 09410643 2-s2.0-84976607976 10.1007/s00521-016-2343-3 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84976607976&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/41868
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2016 The Natural Computing Applications Forum This paper presents a data domain description formed by the minimum volume covering ellipsoid around a dataset, called “ellipsoidal support vector data description (eSVDD).” The method is analogous to support vector data description (SVDD), but instead, with an ellipsoidal domain description allowing tighter space around the data. In eSVDD, a hyperellipsoid extends its ability to describe more complex data patterns by kernel methods. This is explicitly achieved by defining an “empirical feature map” to project the images of given samples to a higher-dimensional space. We compare the performance of the kernelized ellipsoid in one-class classification with SVDD using standard datasets.
format Journal
author Teeyapan K.
Theera-Umpon N.
Auephanwiriyakul S.
spellingShingle Teeyapan K.
Theera-Umpon N.
Auephanwiriyakul S.
Ellipsoidal support vector data description
author_facet Teeyapan K.
Theera-Umpon N.
Auephanwiriyakul S.
author_sort Teeyapan K.
title Ellipsoidal support vector data description
title_short Ellipsoidal support vector data description
title_full Ellipsoidal support vector data description
title_fullStr Ellipsoidal support vector data description
title_full_unstemmed Ellipsoidal support vector data description
title_sort ellipsoidal support vector data description
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84976607976&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/41868
_version_ 1681422081923743744