Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n)
© 2016, Univerzita Komenskeho. All rights reserved. A generalized hypersubstitution of type T maps any operation symbols to the set of all terms. The extensions of generalized hypersubstitutions are map-pings on the set of all terms. The set of all such generalized hypersubstitutions forms a monoid....
Saved in:
Main Authors: | , |
---|---|
Format: | Journal |
Published: |
2017
|
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84955266615&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/42370 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-42370 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-423702017-09-28T04:26:45Z Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n) Boonmee A. Leeratanavalee S. © 2016, Univerzita Komenskeho. All rights reserved. A generalized hypersubstitution of type T maps any operation symbols to the set of all terms. The extensions of generalized hypersubstitutions are map-pings on the set of all terms. The set of all such generalized hypersubstitutions forms a monoid. In this paper, we determine the set of all unit-regular elements of this monoid of typeT = (n). We also conclude a submonoid of the monoid of all generalized hypersubstitutions of type T = (n) which is factorisable. 2017-09-28T04:26:45Z 2017-09-28T04:26:45Z 2016-01-01 Journal 08629544 2-s2.0-84955266615 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84955266615&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/42370 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
description |
© 2016, Univerzita Komenskeho. All rights reserved. A generalized hypersubstitution of type T maps any operation symbols to the set of all terms. The extensions of generalized hypersubstitutions are map-pings on the set of all terms. The set of all such generalized hypersubstitutions forms a monoid. In this paper, we determine the set of all unit-regular elements of this monoid of typeT = (n). We also conclude a submonoid of the monoid of all generalized hypersubstitutions of type T = (n) which is factorisable. |
format |
Journal |
author |
Boonmee A. Leeratanavalee S. |
spellingShingle |
Boonmee A. Leeratanavalee S. Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n) |
author_facet |
Boonmee A. Leeratanavalee S. |
author_sort |
Boonmee A. |
title |
Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n) |
title_short |
Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n) |
title_full |
Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n) |
title_fullStr |
Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n) |
title_full_unstemmed |
Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n) |
title_sort |
factorisable monoid of generalized hypersubstitutions of type<inf>t</inf> = (n) |
publishDate |
2017 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84955266615&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/42370 |
_version_ |
1681422176555630592 |