Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n)

© 2016, Univerzita Komenskeho. All rights reserved. A generalized hypersubstitution of type T maps any operation symbols to the set of all terms. The extensions of generalized hypersubstitutions are map-pings on the set of all terms. The set of all such generalized hypersubstitutions forms a monoid....

Full description

Saved in:
Bibliographic Details
Main Authors: Boonmee A., Leeratanavalee S.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84955266615&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/42370
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-42370
record_format dspace
spelling th-cmuir.6653943832-423702017-09-28T04:26:45Z Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n) Boonmee A. Leeratanavalee S. © 2016, Univerzita Komenskeho. All rights reserved. A generalized hypersubstitution of type T maps any operation symbols to the set of all terms. The extensions of generalized hypersubstitutions are map-pings on the set of all terms. The set of all such generalized hypersubstitutions forms a monoid. In this paper, we determine the set of all unit-regular elements of this monoid of typeT = (n). We also conclude a submonoid of the monoid of all generalized hypersubstitutions of type T = (n) which is factorisable. 2017-09-28T04:26:45Z 2017-09-28T04:26:45Z 2016-01-01 Journal 08629544 2-s2.0-84955266615 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84955266615&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/42370
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2016, Univerzita Komenskeho. All rights reserved. A generalized hypersubstitution of type T maps any operation symbols to the set of all terms. The extensions of generalized hypersubstitutions are map-pings on the set of all terms. The set of all such generalized hypersubstitutions forms a monoid. In this paper, we determine the set of all unit-regular elements of this monoid of typeT = (n). We also conclude a submonoid of the monoid of all generalized hypersubstitutions of type T = (n) which is factorisable.
format Journal
author Boonmee A.
Leeratanavalee S.
spellingShingle Boonmee A.
Leeratanavalee S.
Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n)
author_facet Boonmee A.
Leeratanavalee S.
author_sort Boonmee A.
title Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n)
title_short Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n)
title_full Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n)
title_fullStr Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n)
title_full_unstemmed Factorisable monoid of generalized hypersubstitutions of type<inf>T</inf> = (n)
title_sort factorisable monoid of generalized hypersubstitutions of type<inf>t</inf> = (n)
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84955266615&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/42370
_version_ 1681422176555630592