The common solutions of complementarity problems and a zero point of maximal monotone operators by using the hybrid projection method

© 2016, North Atlantic University Union. All rights reserved. In this paper, we propose a projection method for solving nonlinear complementarity problems and a zero point of maximal monotone operators. Strong convergence theorems are established for solving the common solutions of complementarity p...

Full description

Saved in:
Bibliographic Details
Main Authors: Promluang K., Phuangphoo P., Kumam P.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84964066867&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/42631
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2016, North Atlantic University Union. All rights reserved. In this paper, we propose a projection method for solving nonlinear complementarity problems and a zero point of maximal monotone operators. Strong convergence theorems are established for solving the common solutions of complementarity problems and a zero point of maximal monotone operators together with a system of generalized equilibrium, variational inequality and fixed point problems in a uniformly smooth and 2-uniformly convex real Banach space. Moreover, we also apply the result to Hilbert spaces.