Force feedback control for active stabilization of synchronous whirl orbits in rotor systems with nonlinear stiffness elements

Synchronous vibration in rotor systems having bearings, seals, or other elements with nonlinear stiffness characteristics is prone to amplitude jump when operating close to critical speeds as there may be two or more possible whirl motions for a given unbalance condition. This paper describes resear...

Full description

Saved in:
Bibliographic Details
Main Authors: Cole M., Chamroon C., Ngamprapasom P.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84856521443&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/42886
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-42886
record_format dspace
spelling th-cmuir.6653943832-428862017-09-28T06:41:43Z Force feedback control for active stabilization of synchronous whirl orbits in rotor systems with nonlinear stiffness elements Cole M. Chamroon C. Ngamprapasom P. Synchronous vibration in rotor systems having bearings, seals, or other elements with nonlinear stiffness characteristics is prone to amplitude jump when operating close to critical speeds as there may be two or more possible whirl motions for a given unbalance condition. This paper describes research on how active control techniques may eliminate this potentially undesirable behavior. A control scheme based on feedback of rotor-stator interaction forces is considered. Model-based conditions for stability of low amplitude whirl, derived using Lyapunov's direct method, are used to synthesize controller gains. Subsidiary requirements for existence of a static feedback control law that can achieve stabilization are also explained. An experimental validation is undertaken on a flexible rotor test rig where nonlinear rotor-stator contact interaction can occur across a small radial clearance in one transverse plane. A single radial active magnetic bearing is used to apply control forces in a separate transverse plane. The experiments confirm the conditions under which static feedback of the measured interaction force can prevent degenerate whirl responses such that a low amplitude contact-free orbit is the only possible steady-state response. The gain synthesis method leads to controllers that are physically realizable and can eliminate amplitude jump over a range of running speeds. © 2012 American Society of Mechanical Engineers. 2017-09-28T06:41:43Z 2017-09-28T06:41:43Z 2012-02-07 Journal 10489002 2-s2.0-84856521443 10.1115/1.4005021 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84856521443&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/42886
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description Synchronous vibration in rotor systems having bearings, seals, or other elements with nonlinear stiffness characteristics is prone to amplitude jump when operating close to critical speeds as there may be two or more possible whirl motions for a given unbalance condition. This paper describes research on how active control techniques may eliminate this potentially undesirable behavior. A control scheme based on feedback of rotor-stator interaction forces is considered. Model-based conditions for stability of low amplitude whirl, derived using Lyapunov's direct method, are used to synthesize controller gains. Subsidiary requirements for existence of a static feedback control law that can achieve stabilization are also explained. An experimental validation is undertaken on a flexible rotor test rig where nonlinear rotor-stator contact interaction can occur across a small radial clearance in one transverse plane. A single radial active magnetic bearing is used to apply control forces in a separate transverse plane. The experiments confirm the conditions under which static feedback of the measured interaction force can prevent degenerate whirl responses such that a low amplitude contact-free orbit is the only possible steady-state response. The gain synthesis method leads to controllers that are physically realizable and can eliminate amplitude jump over a range of running speeds. © 2012 American Society of Mechanical Engineers.
format Journal
author Cole M.
Chamroon C.
Ngamprapasom P.
spellingShingle Cole M.
Chamroon C.
Ngamprapasom P.
Force feedback control for active stabilization of synchronous whirl orbits in rotor systems with nonlinear stiffness elements
author_facet Cole M.
Chamroon C.
Ngamprapasom P.
author_sort Cole M.
title Force feedback control for active stabilization of synchronous whirl orbits in rotor systems with nonlinear stiffness elements
title_short Force feedback control for active stabilization of synchronous whirl orbits in rotor systems with nonlinear stiffness elements
title_full Force feedback control for active stabilization of synchronous whirl orbits in rotor systems with nonlinear stiffness elements
title_fullStr Force feedback control for active stabilization of synchronous whirl orbits in rotor systems with nonlinear stiffness elements
title_full_unstemmed Force feedback control for active stabilization of synchronous whirl orbits in rotor systems with nonlinear stiffness elements
title_sort force feedback control for active stabilization of synchronous whirl orbits in rotor systems with nonlinear stiffness elements
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84856521443&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/42886
_version_ 1681422274387771392