Capacity fade in Sn-C nanopowder anodes due to fracture

Sn based anodes allow for high initial capacities, which however cannot be retained due to the severe mechanical damage that occurs during Li-insertion and de-insertion. To better understand the fracture process during electrochemical cycling three different nanopowders comprised of Sn particles att...

Full description

Saved in:
Bibliographic Details
Main Authors: Aifantis K., Huang T., Hackney S., Sarakonsri T., Yu A.
Format: Journal
Published: 2017
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80054799261&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/42929
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-42929
record_format dspace
spelling th-cmuir.6653943832-429292017-09-28T06:42:50Z Capacity fade in Sn-C nanopowder anodes due to fracture Aifantis K. Huang T. Hackney S. Sarakonsri T. Yu A. Sn based anodes allow for high initial capacities, which however cannot be retained due to the severe mechanical damage that occurs during Li-insertion and de-insertion. To better understand the fracture process during electrochemical cycling three different nanopowders comprised of Sn particles attached on artificial graphite, natural graphite or micro-carbon microbeads were examined. Although an initial capacity of 700 mAh g -1 was obtained for all Sn-C nanopowders, a significant capacity fade took place with continuous electrochemical cycling. The microstructural changes in the electrodes corresponding to the changes in electrochemical behavior were studied by transmission and scanning electron microscopy. The fragmentation of Sn observed by microscopy correlates with the capacity fade, but this fragmentation and capacity fade can be controlled by controlling the initial microstructure. It was found that there is a dependence of the capacity fade on the Sn particle volume and surface area fraction of Sn on carbon. © 2011 Elsevier B.V. All rights reserved. 2017-09-28T06:42:50Z 2017-09-28T06:42:50Z 2012-01-01 Journal 03787753 2-s2.0-80054799261 10.1016/j.jpowsour.2011.09.025 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80054799261&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/42929
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description Sn based anodes allow for high initial capacities, which however cannot be retained due to the severe mechanical damage that occurs during Li-insertion and de-insertion. To better understand the fracture process during electrochemical cycling three different nanopowders comprised of Sn particles attached on artificial graphite, natural graphite or micro-carbon microbeads were examined. Although an initial capacity of 700 mAh g -1 was obtained for all Sn-C nanopowders, a significant capacity fade took place with continuous electrochemical cycling. The microstructural changes in the electrodes corresponding to the changes in electrochemical behavior were studied by transmission and scanning electron microscopy. The fragmentation of Sn observed by microscopy correlates with the capacity fade, but this fragmentation and capacity fade can be controlled by controlling the initial microstructure. It was found that there is a dependence of the capacity fade on the Sn particle volume and surface area fraction of Sn on carbon. © 2011 Elsevier B.V. All rights reserved.
format Journal
author Aifantis K.
Huang T.
Hackney S.
Sarakonsri T.
Yu A.
spellingShingle Aifantis K.
Huang T.
Hackney S.
Sarakonsri T.
Yu A.
Capacity fade in Sn-C nanopowder anodes due to fracture
author_facet Aifantis K.
Huang T.
Hackney S.
Sarakonsri T.
Yu A.
author_sort Aifantis K.
title Capacity fade in Sn-C nanopowder anodes due to fracture
title_short Capacity fade in Sn-C nanopowder anodes due to fracture
title_full Capacity fade in Sn-C nanopowder anodes due to fracture
title_fullStr Capacity fade in Sn-C nanopowder anodes due to fracture
title_full_unstemmed Capacity fade in Sn-C nanopowder anodes due to fracture
title_sort capacity fade in sn-c nanopowder anodes due to fracture
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80054799261&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/42929
_version_ 1681422282555129856