Generalized heat kernel related to the operator Lkm and spectrum

In this paper, we study the equation with the initial condition u(x, 0) = f(x) for x ∈ R{double-struck} n , where the operator L k m is defined by, p + q = n is the dimension of the space R{double-struck} n , u(x, t) is an unknown function for (x, t) = (x 1 , x 2 ,...,x n , t) ∈ R{double-struck} n...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Panyatip T., Kananthai A.
التنسيق: دورية
منشور في: 2017
الوصول للمادة أونلاين:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77953342460&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/43283
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Chiang Mai University
الوصف
الملخص:In this paper, we study the equation with the initial condition u(x, 0) = f(x) for x ∈ R{double-struck} n , where the operator L k m is defined by, p + q = n is the dimension of the space R{double-struck} n , u(x, t) is an unknown function for (x, t) = (x 1 , x 2 ,...,x n , t) ∈ R{double-struck} n × (0,∞), f(x) is a given generalized function, k and m are a positive integer and c is a positive constant. We obtain the solution of such equation which is related to the spectrum and the kernel. Moreover, such the kernel has interesting properties and also related to the kernel of an extension of the heat equation.