A convex combination method for quantile regression with interval data
© 2018, Springer International Publishing AG. This paper studies a quantile regression under asymmetric Laplace distribution (semi-parametric model) with interval valued data. Generally, the center point of the interval data has been used to represent the sample data for estimated parameter of the m...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Book Series |
Published: |
2018
|
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85038876727&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/43914 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-43914 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-439142018-01-24T04:15:04Z A convex combination method for quantile regression with interval data Somsak Chanaim Chatchai Khiewngamdee Songsak Sriboonchitta Chongkolnee Rungruang © 2018, Springer International Publishing AG. This paper studies a quantile regression under asymmetric Laplace distribution (semi-parametric model) with interval valued data. Generally, the center point of the interval data has been used to represent the sample data for estimated parameter of the model. This paper uses the convex combination method to find the best point to estimate parameter in the quantile regression model. We apply the quantile capital asset pricing model (quantile CAPM) to present the result. 2018-01-24T04:15:04Z 2018-01-24T04:15:04Z 2018-01-01 Book Series 1860949X 2-s2.0-85038876727 10.1007/978-3-319-73150-6_35 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85038876727&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/43914 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
description |
© 2018, Springer International Publishing AG. This paper studies a quantile regression under asymmetric Laplace distribution (semi-parametric model) with interval valued data. Generally, the center point of the interval data has been used to represent the sample data for estimated parameter of the model. This paper uses the convex combination method to find the best point to estimate parameter in the quantile regression model. We apply the quantile capital asset pricing model (quantile CAPM) to present the result. |
format |
Book Series |
author |
Somsak Chanaim Chatchai Khiewngamdee Songsak Sriboonchitta Chongkolnee Rungruang |
spellingShingle |
Somsak Chanaim Chatchai Khiewngamdee Songsak Sriboonchitta Chongkolnee Rungruang A convex combination method for quantile regression with interval data |
author_facet |
Somsak Chanaim Chatchai Khiewngamdee Songsak Sriboonchitta Chongkolnee Rungruang |
author_sort |
Somsak Chanaim |
title |
A convex combination method for quantile regression with interval data |
title_short |
A convex combination method for quantile regression with interval data |
title_full |
A convex combination method for quantile regression with interval data |
title_fullStr |
A convex combination method for quantile regression with interval data |
title_full_unstemmed |
A convex combination method for quantile regression with interval data |
title_sort |
convex combination method for quantile regression with interval data |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85038876727&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/43914 |
_version_ |
1681422462111186944 |