How better are predictive models: Analysis on the practically important example of robust interval uncertainty
© Springer International Publishing AG 2018. One of the main applications of science and engineering is to predict future value of different quantities of interest. In the traditional statistical approach, we first use observations to estimate the parameters of an appropriate model, and then use the...
Saved in:
Main Authors: | Vladik Kreinovich, Hung T. Nguyen, Songsak Sriboonchitta, Olga Kosheleva |
---|---|
格式: | Book Series |
出版: |
2018
|
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85037850732&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/43931 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
相似書籍
-
How better are predictive models: Analysis on the practically important example of robust interval uncertainty
由: Vladik Kreinovich, et al.
出版: (2018) -
Robustness as a criterion for selecting a probability distribution under uncertainty
由: Songsak Sriboonchitta, et al.
出版: (2018) -
Robustness as a criterion for selecting a probability distribution under uncertainty
由: Songsak Sriboonchitta, et al.
出版: (2018) -
How to get beyond uniform when applying Maxent to interval uncertainty
由: Songsak Sriboonchitta, et al.
出版: (2018) -
How to get beyond uniform when applying Maxent to interval uncertainty
由: Songsak Sriboonchitta, et al.
出版: (2018)