Wavelet multilevel augmentation method for linear boundary value problems
© 2015, Utudee and Maleewong; licensee Springer. This work presents a new approach to numerically solve the general linear two-point boundary value problems with Dirichlet boundary conditions. Multilevel bases from the anti-derivatives of the Daubechies wavelets are constructed in conjunction with t...
Saved in:
Main Authors: | Somlak Utudee, Montri Maleewong |
---|---|
格式: | 雜誌 |
出版: |
2018
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84928597604&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/44022 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
相似書籍
-
Wavelet multilevel augmentation method for linear boundary value problems
由: Somlak Utudee, et al.
出版: (2018) -
Multilevel anti-derivative wavelets with augmentation for nonlinear boundary value problems
由: Somlak Utudee, et al.
出版: (2018) -
Multilevel anti-derivative wavelets with augmentation for nonlinear boundary value problems
由: Somlak Utudee, et al.
出版: (2018) -
Multilevel anti-derivative wavelets with augmentation for nonlinear boundary value problems
由: Utudee S., et al.
出版: (2017) -
Multiresolution wavelet bases with augmentation method for solving singularly perturbed reaction-diffusion Neumann problem
由: Somlak Utudee, et al.
出版: (2018)