Ethyl rosmarinate relaxes rat aorta by an endothelium-independent pathway
© 2015 Elsevier B.V. Ethyl rosmarinate is an ester derivative of rosmarinic acid, a major constituent of Hyptis suaveolens. The present study investigated the vasorelaxant mechanism of ethyl rosmarinate in isolated rat aortic rings using an organ bath system. Ethyl rosmarinate (0.1 μM-3 mM) produced...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84944732030&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/44076 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-44076 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-440762018-04-25T07:45:24Z Ethyl rosmarinate relaxes rat aorta by an endothelium-independent pathway Piyawadee Wicha Jiraporn Tocharus Archawin Nakaew Rungusa Pantan Apichart Suksamrarn Chainarong Tocharus Agricultural and Biological Sciences © 2015 Elsevier B.V. Ethyl rosmarinate is an ester derivative of rosmarinic acid, a major constituent of Hyptis suaveolens. The present study investigated the vasorelaxant mechanism of ethyl rosmarinate in isolated rat aortic rings using an organ bath system. Ethyl rosmarinate (0.1 μM-3 mM) produced concentration-dependent relaxation in aortic rings pre-contracted with phenylephrine (10 μM), exhibiting a pD 2 value of 4.56±0.08 and an E max value of 93.82±5.00% (in endothelium-intact rings), as well as a pD 2 value of 4.42±0.05 and an E max value of 92.10±3.78% (in endothelium-denuded rings). In the endothelium-denuded rings, the vasorelaxant effect of ethyl rosmarinate was reduced by only 4-aminopyridine (1 mM); however, this was not the case with tetraethylammonium (5 mM), glibenclamide (10 μM), barium chloride (1 mM), and 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, 1 μM). Ethyl rosmarinate also reduced the contraction induced by phenylephrine (10 μM) and caffeine (20 mM) in a Ca 2+ -free solution, and inhibited the contraction induced by increasing extracellular Ca 2+ influx, which was induced by KCl (80 mM). Ethyl rosmarinate (10 μM) inhibits concentration-response curves for phenylephrine, while in the same concentration of ethyl rosmarinate has no effect on contractions induced by increasing concentrations of calcium in the presence of high extracellular potassium. Our results suggests that ethyl rosmarinate induces relaxation in aortic rings via an endothelium-independent pathway, which involves the opening of voltage-gated potassium (Kv) channels and the blockade of both Ca 2+ release from intracellular stores and extracellular Ca 2+ influx. Moreover, ethyl-rosmarinate acts on the extracellular Ca 2+ influx inhibition by interacting with voltage-operated calcium channels (VOCCs) and receptor-operated calcium channels (ROCCs). 2018-01-24T04:37:50Z 2018-01-24T04:37:50Z 2015-11-05 Journal 18790712 00142999 2-s2.0-84944732030 10.1016/j.ejphar.2015.09.003 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84944732030&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/44076 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Agricultural and Biological Sciences |
spellingShingle |
Agricultural and Biological Sciences Piyawadee Wicha Jiraporn Tocharus Archawin Nakaew Rungusa Pantan Apichart Suksamrarn Chainarong Tocharus Ethyl rosmarinate relaxes rat aorta by an endothelium-independent pathway |
description |
© 2015 Elsevier B.V. Ethyl rosmarinate is an ester derivative of rosmarinic acid, a major constituent of Hyptis suaveolens. The present study investigated the vasorelaxant mechanism of ethyl rosmarinate in isolated rat aortic rings using an organ bath system. Ethyl rosmarinate (0.1 μM-3 mM) produced concentration-dependent relaxation in aortic rings pre-contracted with phenylephrine (10 μM), exhibiting a pD 2 value of 4.56±0.08 and an E max value of 93.82±5.00% (in endothelium-intact rings), as well as a pD 2 value of 4.42±0.05 and an E max value of 92.10±3.78% (in endothelium-denuded rings). In the endothelium-denuded rings, the vasorelaxant effect of ethyl rosmarinate was reduced by only 4-aminopyridine (1 mM); however, this was not the case with tetraethylammonium (5 mM), glibenclamide (10 μM), barium chloride (1 mM), and 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, 1 μM). Ethyl rosmarinate also reduced the contraction induced by phenylephrine (10 μM) and caffeine (20 mM) in a Ca 2+ -free solution, and inhibited the contraction induced by increasing extracellular Ca 2+ influx, which was induced by KCl (80 mM). Ethyl rosmarinate (10 μM) inhibits concentration-response curves for phenylephrine, while in the same concentration of ethyl rosmarinate has no effect on contractions induced by increasing concentrations of calcium in the presence of high extracellular potassium. Our results suggests that ethyl rosmarinate induces relaxation in aortic rings via an endothelium-independent pathway, which involves the opening of voltage-gated potassium (Kv) channels and the blockade of both Ca 2+ release from intracellular stores and extracellular Ca 2+ influx. Moreover, ethyl-rosmarinate acts on the extracellular Ca 2+ influx inhibition by interacting with voltage-operated calcium channels (VOCCs) and receptor-operated calcium channels (ROCCs). |
format |
Journal |
author |
Piyawadee Wicha Jiraporn Tocharus Archawin Nakaew Rungusa Pantan Apichart Suksamrarn Chainarong Tocharus |
author_facet |
Piyawadee Wicha Jiraporn Tocharus Archawin Nakaew Rungusa Pantan Apichart Suksamrarn Chainarong Tocharus |
author_sort |
Piyawadee Wicha |
title |
Ethyl rosmarinate relaxes rat aorta by an endothelium-independent pathway |
title_short |
Ethyl rosmarinate relaxes rat aorta by an endothelium-independent pathway |
title_full |
Ethyl rosmarinate relaxes rat aorta by an endothelium-independent pathway |
title_fullStr |
Ethyl rosmarinate relaxes rat aorta by an endothelium-independent pathway |
title_full_unstemmed |
Ethyl rosmarinate relaxes rat aorta by an endothelium-independent pathway |
title_sort |
ethyl rosmarinate relaxes rat aorta by an endothelium-independent pathway |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84944732030&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/44076 |
_version_ |
1681422492257746944 |