Development and assessment of different modeling approaches for size-mass estimation of mango fruits (Mangifera indica L., cv. 'Nam Dokmai')

© 2015 Elsevier B.V. To meet consumer demands, the need for quick and accurate methods for quality assessment of fresh fruits is increasing constantly. This study presents a comparison of three different models for mass estimation of mango fruits (cv. 'Nam Dokmai') calculated by simple lin...

Full description

Saved in:
Bibliographic Details
Main Authors: Katrin Schulze, Marcus Nagle, Wolfram Spreer, Busrakorn Mahayothee, Joachim Müller
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84937836183&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/44340
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-44340
record_format dspace
spelling th-cmuir.6653943832-443402018-04-25T07:48:28Z Development and assessment of different modeling approaches for size-mass estimation of mango fruits (Mangifera indica L., cv. 'Nam Dokmai') Katrin Schulze Marcus Nagle Wolfram Spreer Busrakorn Mahayothee Joachim Müller Agricultural and Biological Sciences © 2015 Elsevier B.V. To meet consumer demands, the need for quick and accurate methods for quality assessment of fresh fruits is increasing constantly. This study presents a comparison of three different models for mass estimation of mango fruits (cv. 'Nam Dokmai') calculated by simple linear regression (SLR), multiple linear regression (MLR) and artificial neural network (ANN). Three dimensions (length, maximum width, and maximum thickness) were manually measured and included as parameters for model building. Calibration and validation were carried out on independent data sets with 820 samples (2010-2012) and 61 samples (2014), respectively. This allowed it to establish a high-performance model that can be used for further mass-size estimation in a machine-vision system. For the SLR, an existing equation for mass estimation was modified to calculate an adjusted coefficient for accurate mass estimation. A MLR model was proposed to obtain the intercept, the slopes of the three parameters length, maximum width and maximum thickness as well as the random error. In addition, an ANN model was used as it allows the network to learn linear and nonlinear relationships between inputs and outputs. Performance evaluation of three different models was based on a compilation of different statistical error parameters and goodness-of-fit measures and the outcomes of the models were compared. ANN was found to be the most accurate and robust model for mass estimation with a root mean squared error (. RMSE) of 6.55. g, mean absolute percentage error (. MAPE) of 1.62%, and coefficient of efficiency (. E) of 0.99 after validation. Therefore, it can be applied for mass estimation of mango fruits with highest accuracy and success rate of 96.7% compared to the other models in this study. 2018-01-24T04:41:06Z 2018-01-24T04:41:06Z 2015-06-01 Journal 01681699 2-s2.0-84937836183 10.1016/j.compag.2015.04.013 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84937836183&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/44340
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Agricultural and Biological Sciences
spellingShingle Agricultural and Biological Sciences
Katrin Schulze
Marcus Nagle
Wolfram Spreer
Busrakorn Mahayothee
Joachim Müller
Development and assessment of different modeling approaches for size-mass estimation of mango fruits (Mangifera indica L., cv. 'Nam Dokmai')
description © 2015 Elsevier B.V. To meet consumer demands, the need for quick and accurate methods for quality assessment of fresh fruits is increasing constantly. This study presents a comparison of three different models for mass estimation of mango fruits (cv. 'Nam Dokmai') calculated by simple linear regression (SLR), multiple linear regression (MLR) and artificial neural network (ANN). Three dimensions (length, maximum width, and maximum thickness) were manually measured and included as parameters for model building. Calibration and validation were carried out on independent data sets with 820 samples (2010-2012) and 61 samples (2014), respectively. This allowed it to establish a high-performance model that can be used for further mass-size estimation in a machine-vision system. For the SLR, an existing equation for mass estimation was modified to calculate an adjusted coefficient for accurate mass estimation. A MLR model was proposed to obtain the intercept, the slopes of the three parameters length, maximum width and maximum thickness as well as the random error. In addition, an ANN model was used as it allows the network to learn linear and nonlinear relationships between inputs and outputs. Performance evaluation of three different models was based on a compilation of different statistical error parameters and goodness-of-fit measures and the outcomes of the models were compared. ANN was found to be the most accurate and robust model for mass estimation with a root mean squared error (. RMSE) of 6.55. g, mean absolute percentage error (. MAPE) of 1.62%, and coefficient of efficiency (. E) of 0.99 after validation. Therefore, it can be applied for mass estimation of mango fruits with highest accuracy and success rate of 96.7% compared to the other models in this study.
format Journal
author Katrin Schulze
Marcus Nagle
Wolfram Spreer
Busrakorn Mahayothee
Joachim Müller
author_facet Katrin Schulze
Marcus Nagle
Wolfram Spreer
Busrakorn Mahayothee
Joachim Müller
author_sort Katrin Schulze
title Development and assessment of different modeling approaches for size-mass estimation of mango fruits (Mangifera indica L., cv. 'Nam Dokmai')
title_short Development and assessment of different modeling approaches for size-mass estimation of mango fruits (Mangifera indica L., cv. 'Nam Dokmai')
title_full Development and assessment of different modeling approaches for size-mass estimation of mango fruits (Mangifera indica L., cv. 'Nam Dokmai')
title_fullStr Development and assessment of different modeling approaches for size-mass estimation of mango fruits (Mangifera indica L., cv. 'Nam Dokmai')
title_full_unstemmed Development and assessment of different modeling approaches for size-mass estimation of mango fruits (Mangifera indica L., cv. 'Nam Dokmai')
title_sort development and assessment of different modeling approaches for size-mass estimation of mango fruits (mangifera indica l., cv. 'nam dokmai')
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84937836183&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/44340
_version_ 1681422541398212608