Volatility and dependence for systemic risk measurement of the international financial system

© Springer International Publishing Switzerland 2015. In the context of existing downside correlations, we proposed multi-dimensional elliptical and asymmetric copula with CES models to measure the dependence of G7 stock market returns and forecast their systemic risk. Our analysis firstly used seve...

全面介紹

Saved in:
書目詳細資料
Main Authors: Jianxu Liu, Songsak Sriboonchitta, Panisara Phochanachan, Jiechen Tang
格式: Conference Proceeding
出版: 2018
主題:
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84958543998&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/44593
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
實物特徵
總結:© Springer International Publishing Switzerland 2015. In the context of existing downside correlations, we proposed multi-dimensional elliptical and asymmetric copula with CES models to measure the dependence of G7 stock market returns and forecast their systemic risk. Our analysis firstly used several GARCH families with asymmetric distribution to fit G7 stock returns, and selected the best to our marginal distributions in terms of AIC and BIC. Second, the multivariate copulas were used to measure dependence structures of G7 stock returns. Last, the best modeling copula with CES was used to examine systemic risk of G7 stock markets. By comparison, we find the mixed C-vine copula has the best performance among all multivariate copulas. Moreover, the pre-crisis period features lower levels of risk contribution, while risk contribution increases gradually while the crisis unfolds, and the contribution of each stock market to the aggregate financial risk is not invariant.