Tailoring Cu<inf>2-x</inf>Te quantum-dot-decorated ZnO nanoparticles for potential solar cell applications

Cu 2-x Te QDs on ZnO nanoparticles were synthesized using a successive ionic layer absorption and reaction technique (SILAR) at room temperature. The as-synthesized QDs which were distributively deposited on ZnO nanoparticles surface were characterized by field emission scanning electron microscope...

Full description

Saved in:
Bibliographic Details
Main Authors: Auttasit Tubtimtae, Surachet Phadungdhitidhada, Duangmanee Wongratanaphisan, Atcharawon Gardchareon, Supab Choopun
Format: Journal
Published: 2018
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84898075477&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/45059
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:Cu 2-x Te QDs on ZnO nanoparticles were synthesized using a successive ionic layer absorption and reaction technique (SILAR) at room temperature. The as-synthesized QDs which were distributively deposited on ZnO nanoparticles surface were characterized by field emission scanning electron microscope (FE-SEM), X-ray diffraction and high-resolution transmittance microscope (HR-TEM). It revealed that the average diameter of the QDs was ∼2 nm. The synthesized Cu 2-x Te QDs were solely orthorhombic Cu 1.44 Te phase. The growth mechanism was supposed that it based on ions deposition. The energy gap of as-synthesized Cu 2-x Te QDs was determined ∼1.1 eV and the smallest energy gap of 0.76 eV was obtained, equal to that of bulk material. Raman spectroscopy and FTIR were also used to study the Cu 2-x Te QDs on ZnO nanoparticles. These characteristics suggest a promising implication for a potential broadband sensitizer of QDSCs. © 2014 Elsevier B.V. All rights reserved.