Nanocomposite thin film of poly(3-aminobenzoic acid) and multiwalled carbon nanotubes fabricated through an electrochemical method

The composite thin films of poly(3-aminobenzoic acid) (PABA) and multiwalled carbon nanotubes (MWNTs) are successfully fabricated through an electrochemical method. The composite mixtures containing 50 mM of 3-aminobenzoic acid with various concentrations of MWNTs (1.0, 2.5, 5.0, 7.5, and 10 mg/mL)...

Full description

Saved in:
Bibliographic Details
Main Authors: Paphawadee Netsuwan, Wirat Chaisu, Sukon Phanichphant, Saengrawee Sriwichai
Format: Journal
Published: 2018
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904125740&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/45309
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-45309
record_format dspace
spelling th-cmuir.6653943832-453092018-01-24T06:08:17Z Nanocomposite thin film of poly(3-aminobenzoic acid) and multiwalled carbon nanotubes fabricated through an electrochemical method Paphawadee Netsuwan Wirat Chaisu Sukon Phanichphant Saengrawee Sriwichai The composite thin films of poly(3-aminobenzoic acid) (PABA) and multiwalled carbon nanotubes (MWNTs) are successfully fabricated through an electrochemical method. The composite mixtures containing 50 mM of 3-aminobenzoic acid with various concentrations of MWNTs (1.0, 2.5, 5.0, 7.5, and 10 mg/mL) in 0.5 M HOwere prepared and used in this study. Cyclic voltammetry (CV) was used for fabrication and monitoring the electropolymerization of the composite thin films with potential range of 0 to 1100 mV for 5 cycles at scan rate of 20 mV/s on indium tin oxide- (ITO)-coated glass substrate. UV-vis absorption spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) techniques were employed to characterize the obtained composite thin films. It was found that MWNTs can enhance the peak current of CV traces of the PABA/MWNTs composite thin films without affecting the UV-vis absorption spectra. The surface morphology of the thin films can be studied using AFM and SEM techniques. © 2014 Paphawadee Netsuwan et al. 2018-01-24T06:08:17Z 2018-01-24T06:08:17Z 2014-01-01 Journal 16878442 16878434 2-s2.0-84904125740 10.1155/2014/873028 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904125740&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/45309
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description The composite thin films of poly(3-aminobenzoic acid) (PABA) and multiwalled carbon nanotubes (MWNTs) are successfully fabricated through an electrochemical method. The composite mixtures containing 50 mM of 3-aminobenzoic acid with various concentrations of MWNTs (1.0, 2.5, 5.0, 7.5, and 10 mg/mL) in 0.5 M HOwere prepared and used in this study. Cyclic voltammetry (CV) was used for fabrication and monitoring the electropolymerization of the composite thin films with potential range of 0 to 1100 mV for 5 cycles at scan rate of 20 mV/s on indium tin oxide- (ITO)-coated glass substrate. UV-vis absorption spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) techniques were employed to characterize the obtained composite thin films. It was found that MWNTs can enhance the peak current of CV traces of the PABA/MWNTs composite thin films without affecting the UV-vis absorption spectra. The surface morphology of the thin films can be studied using AFM and SEM techniques. © 2014 Paphawadee Netsuwan et al.
format Journal
author Paphawadee Netsuwan
Wirat Chaisu
Sukon Phanichphant
Saengrawee Sriwichai
spellingShingle Paphawadee Netsuwan
Wirat Chaisu
Sukon Phanichphant
Saengrawee Sriwichai
Nanocomposite thin film of poly(3-aminobenzoic acid) and multiwalled carbon nanotubes fabricated through an electrochemical method
author_facet Paphawadee Netsuwan
Wirat Chaisu
Sukon Phanichphant
Saengrawee Sriwichai
author_sort Paphawadee Netsuwan
title Nanocomposite thin film of poly(3-aminobenzoic acid) and multiwalled carbon nanotubes fabricated through an electrochemical method
title_short Nanocomposite thin film of poly(3-aminobenzoic acid) and multiwalled carbon nanotubes fabricated through an electrochemical method
title_full Nanocomposite thin film of poly(3-aminobenzoic acid) and multiwalled carbon nanotubes fabricated through an electrochemical method
title_fullStr Nanocomposite thin film of poly(3-aminobenzoic acid) and multiwalled carbon nanotubes fabricated through an electrochemical method
title_full_unstemmed Nanocomposite thin film of poly(3-aminobenzoic acid) and multiwalled carbon nanotubes fabricated through an electrochemical method
title_sort nanocomposite thin film of poly(3-aminobenzoic acid) and multiwalled carbon nanotubes fabricated through an electrochemical method
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904125740&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/45309
_version_ 1681422721227948032