Characterization of GO and TiO<inf>2</inf>-GO composites prepared by using microwave technique

Graphene oxide (GO) and titanium dioxide-graphene oxide (TiO 2 -GO) composites were prepared by microwave technique at power of 500 W and for 10 min. The crystalline structure, chemical structure and morphological of graphite, GO and TiO 2 -GO were investigated in this study. The morphology of GO a...

Full description

Saved in:
Bibliographic Details
Main Authors: Chariya Patomnetikul, Somchai Thongtem, Suparut Narksitipan
Format: Conference Proceeding
Published: 2018
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84902828433&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/45559
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:Graphene oxide (GO) and titanium dioxide-graphene oxide (TiO 2 -GO) composites were prepared by microwave technique at power of 500 W and for 10 min. The crystalline structure, chemical structure and morphological of graphite, GO and TiO 2 -GO were investigated in this study. The morphology of GO and TiO 2 -GO composites were characterized by scanning electron microscopy (SEM). It showed that the TiO 2 -GO composites seem to consist of TiO 2 particles aggregated on the top of graphene oxide layer. The strong peak in the XRD pattern of natural graphite appears at 2θ = 26.6°, corresponding with the interlayer spacing of 0.329 nm while the GO pattern shows a characteristic peak at 2θ = 11.8° is assigned to (002) inter-planar spacing of 0.736 nm, indicating the presence of oxygen-containing functional groups formed during oxidation. These groups cause the GO sheets to stack more loosely, and the interlayer spacing increases from 0.329 nm to 0.736 nm. Additionally, XRD pattern for the TiO 2 -GO composites at 2θ = 25.3° can be ascribed to the anatase phase of TiO 2 (JCPDF 21-1272), which is significantly different from the natural graphite and graphene oxide. © 2014 SPIE.