Ammonium tolerance and toxicity of Actinoscirpus grossus - A candidate species for use in tropical constructed wetland systems

Actinoscirpus grossus, a native species in tropical wetlands of South-East Asia, North Australia and the Pacific islands, has been reported to perform well in experimental scale constructed wetland (CW) systems. However, little is known about how high NH4+ concentrations prevailing in wastewater aff...

Full description

Saved in:
Bibliographic Details
Main Authors: Narumol Piwpuan, Arunothai Jampeetong, Hans Brix
Format: Journal
Published: 2018
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904436777&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/45577
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-45577
record_format dspace
spelling th-cmuir.6653943832-455772018-01-24T06:12:30Z Ammonium tolerance and toxicity of Actinoscirpus grossus - A candidate species for use in tropical constructed wetland systems Narumol Piwpuan Arunothai Jampeetong Hans Brix Actinoscirpus grossus, a native species in tropical wetlands of South-East Asia, North Australia and the Pacific islands, has been reported to perform well in experimental scale constructed wetland (CW) systems. However, little is known about how high NH4+ concentrations prevailing in wastewater affect growth and performance of this species. We examined growth, morphological and physiological responses of A. grossus to NH4+ concentrations of 0.5, 2.5, 5, 10 and 15mM under hydroponic growth conditions. The relative growth rates (RGR) of the plants were highest at 2.5mM NH4+ but significantly reduced at 10 and 15mM NH4+. The roots of the plants were stunted and produced subepidermal lignified-cell layers at exposure to 10 and 15mM NH4+. The photosynthetic rates did not differ between treatments (average A n =21.3±0.4μmolCO 2 m -2 s -1 ) but the photosynthetic nitrogen and carbon use efficiency (PNUE and PCUE) were significantly depressed at 10 and 15mM NH4+ treatments. The concentration of NH4+ in the roots, but not in the leaves, reflected the NH4+ concentration in the growth medium suggesting that the species is unable to regulate the NH4+ uptake. The high root respiration rates in concert with high tissue NH4+ and declined C/N ratio at 10 and 15mM NH4+ suggest that the NH4+ assimilation occurs primarily in the roots and the plant has inadequate C-skeletons for NH4+ assimilation and exudation at high NH4+ concentration in the external solution. The concentrations of mineral cations were generally reduced and the root membrane permeability increased at high external NH4+ concentrations. Our study shows that A. grossus tolerates NH4+ concentrations up to 5mM which is characteristic of most types of wastewater. Hence, A. grossus is a good native candidate species for use in CW systems in tropical and subtropical climates in South-East Asia, North Australia and the Pacific islands. © 2014 Elsevier Inc. 2018-01-24T06:12:30Z 2018-01-24T06:12:30Z 2014-01-01 Journal 10902414 01476513 2-s2.0-84904436777 10.1016/j.ecoenv.2014.05.032 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904436777&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/45577
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description Actinoscirpus grossus, a native species in tropical wetlands of South-East Asia, North Australia and the Pacific islands, has been reported to perform well in experimental scale constructed wetland (CW) systems. However, little is known about how high NH4+ concentrations prevailing in wastewater affect growth and performance of this species. We examined growth, morphological and physiological responses of A. grossus to NH4+ concentrations of 0.5, 2.5, 5, 10 and 15mM under hydroponic growth conditions. The relative growth rates (RGR) of the plants were highest at 2.5mM NH4+ but significantly reduced at 10 and 15mM NH4+. The roots of the plants were stunted and produced subepidermal lignified-cell layers at exposure to 10 and 15mM NH4+. The photosynthetic rates did not differ between treatments (average A n =21.3±0.4μmolCO 2 m -2 s -1 ) but the photosynthetic nitrogen and carbon use efficiency (PNUE and PCUE) were significantly depressed at 10 and 15mM NH4+ treatments. The concentration of NH4+ in the roots, but not in the leaves, reflected the NH4+ concentration in the growth medium suggesting that the species is unable to regulate the NH4+ uptake. The high root respiration rates in concert with high tissue NH4+ and declined C/N ratio at 10 and 15mM NH4+ suggest that the NH4+ assimilation occurs primarily in the roots and the plant has inadequate C-skeletons for NH4+ assimilation and exudation at high NH4+ concentration in the external solution. The concentrations of mineral cations were generally reduced and the root membrane permeability increased at high external NH4+ concentrations. Our study shows that A. grossus tolerates NH4+ concentrations up to 5mM which is characteristic of most types of wastewater. Hence, A. grossus is a good native candidate species for use in CW systems in tropical and subtropical climates in South-East Asia, North Australia and the Pacific islands. © 2014 Elsevier Inc.
format Journal
author Narumol Piwpuan
Arunothai Jampeetong
Hans Brix
spellingShingle Narumol Piwpuan
Arunothai Jampeetong
Hans Brix
Ammonium tolerance and toxicity of Actinoscirpus grossus - A candidate species for use in tropical constructed wetland systems
author_facet Narumol Piwpuan
Arunothai Jampeetong
Hans Brix
author_sort Narumol Piwpuan
title Ammonium tolerance and toxicity of Actinoscirpus grossus - A candidate species for use in tropical constructed wetland systems
title_short Ammonium tolerance and toxicity of Actinoscirpus grossus - A candidate species for use in tropical constructed wetland systems
title_full Ammonium tolerance and toxicity of Actinoscirpus grossus - A candidate species for use in tropical constructed wetland systems
title_fullStr Ammonium tolerance and toxicity of Actinoscirpus grossus - A candidate species for use in tropical constructed wetland systems
title_full_unstemmed Ammonium tolerance and toxicity of Actinoscirpus grossus - A candidate species for use in tropical constructed wetland systems
title_sort ammonium tolerance and toxicity of actinoscirpus grossus - a candidate species for use in tropical constructed wetland systems
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904436777&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/45577
_version_ 1681422771418038272