The evidence-theoretic k-NN rule for rank-ordered data: Application to predict an individual’s source of loan

© Springer International Publishing Switzerland 2014. We adapted the nonparametric evidence-theoretic k-Nearest Neighbor (k-NN) rule,whichwas originally designed formultinomial choice data, to rank-ordered choice data.The contribution of thismodel is its ability to extract information from all the o...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Supanika Leurcharusmee, Peerapat Jatukannyaprateep, Songsak Sriboonchitta, Thierry Denoeux
التنسيق: Book Series
منشور في: 2018
الوصول للمادة أونلاين:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84921510354&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/45670
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Chiang Mai University
الوصف
الملخص:© Springer International Publishing Switzerland 2014. We adapted the nonparametric evidence-theoretic k-Nearest Neighbor (k-NN) rule,whichwas originally designed formultinomial choice data, to rank-ordered choice data.The contribution of thismodel is its ability to extract information from all the observed rankings to improve the prediction power for each individual’s primary choice. The evidence-theoretic k-NNrule for heterogeneous rank-ordered datamethod can be consistently applied to complete and partial rank-ordered choice data. This model was used to predict an individual’s source of loan given his or her characteristics and also identify individual characteristics that help the prediction. The results show that the prediction from the rank-ordered choice model outperforms that of the traditionalmultinomial choicemodelwith only one observed choice.