The tripartite Ramsey numbers rt(C4;2) and rt(C4;3)
© 2015, Forum-Editrice Universitaria Udinese SRL. All rigths reserved. The k-colored tripartite Ramsey numbers r t (G; k) is the smallest positive integer n such that any k-coloring of lines of a complete tripartite graph K n,n,n there always exists a monochromatic subgraph isomorphic to G. When G...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923085360&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/45725 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-45725 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-457252018-01-24T06:16:33Z The tripartite Ramsey numbers rt(C4;2) and rt(C4;3) S. Buada D. Samana V. Longani © 2015, Forum-Editrice Universitaria Udinese SRL. All rigths reserved. The k-colored tripartite Ramsey numbers r t (G; k) is the smallest positive integer n such that any k-coloring of lines of a complete tripartite graph K n,n,n there always exists a monochromatic subgraph isomorphic to G. When G is C 4 it is known, but unpublished in a journal, that r t (C 4 ; 2) = 3. In this paper we simplify the proof of r t (C 4 ; 2) = 3 and show the new result that r t (C 4 ; 3) = 7. 2018-01-24T06:16:33Z 2018-01-24T06:16:33Z 2014-01-01 Journal 11268042 2-s2.0-84923085360 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923085360&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/45725 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
description |
© 2015, Forum-Editrice Universitaria Udinese SRL. All rigths reserved. The k-colored tripartite Ramsey numbers r t (G; k) is the smallest positive integer n such that any k-coloring of lines of a complete tripartite graph K n,n,n there always exists a monochromatic subgraph isomorphic to G. When G is C 4 it is known, but unpublished in a journal, that r t (C 4 ; 2) = 3. In this paper we simplify the proof of r t (C 4 ; 2) = 3 and show the new result that r t (C 4 ; 3) = 7. |
format |
Journal |
author |
S. Buada D. Samana V. Longani |
spellingShingle |
S. Buada D. Samana V. Longani The tripartite Ramsey numbers rt(C4;2) and rt(C4;3) |
author_facet |
S. Buada D. Samana V. Longani |
author_sort |
S. Buada |
title |
The tripartite Ramsey numbers rt(C4;2) and rt(C4;3) |
title_short |
The tripartite Ramsey numbers rt(C4;2) and rt(C4;3) |
title_full |
The tripartite Ramsey numbers rt(C4;2) and rt(C4;3) |
title_fullStr |
The tripartite Ramsey numbers rt(C4;2) and rt(C4;3) |
title_full_unstemmed |
The tripartite Ramsey numbers rt(C4;2) and rt(C4;3) |
title_sort |
tripartite ramsey numbers rt(c4;2) and rt(c4;3) |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923085360&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/45725 |
_version_ |
1681422798794260480 |