The tripartite Ramsey numbers rt(C4;2) and rt(C4;3)

© 2015, Forum-Editrice Universitaria Udinese SRL. All rigths reserved. The k-colored tripartite Ramsey numbers r t (G; k) is the smallest positive integer n such that any k-coloring of lines of a complete tripartite graph K n,n,n there always exists a monochromatic subgraph isomorphic to G. When G...

Full description

Saved in:
Bibliographic Details
Main Authors: S. Buada, D. Samana, V. Longani
Format: Journal
Published: 2018
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923085360&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/45725
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-45725
record_format dspace
spelling th-cmuir.6653943832-457252018-01-24T06:16:33Z The tripartite Ramsey numbers rt(C4;2) and rt(C4;3) S. Buada D. Samana V. Longani © 2015, Forum-Editrice Universitaria Udinese SRL. All rigths reserved. The k-colored tripartite Ramsey numbers r t (G; k) is the smallest positive integer n such that any k-coloring of lines of a complete tripartite graph K n,n,n there always exists a monochromatic subgraph isomorphic to G. When G is C 4 it is known, but unpublished in a journal, that r t (C 4 ; 2) = 3. In this paper we simplify the proof of r t (C 4 ; 2) = 3 and show the new result that r t (C 4 ; 3) = 7. 2018-01-24T06:16:33Z 2018-01-24T06:16:33Z 2014-01-01 Journal 11268042 2-s2.0-84923085360 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923085360&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/45725
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2015, Forum-Editrice Universitaria Udinese SRL. All rigths reserved. The k-colored tripartite Ramsey numbers r t (G; k) is the smallest positive integer n such that any k-coloring of lines of a complete tripartite graph K n,n,n there always exists a monochromatic subgraph isomorphic to G. When G is C 4 it is known, but unpublished in a journal, that r t (C 4 ; 2) = 3. In this paper we simplify the proof of r t (C 4 ; 2) = 3 and show the new result that r t (C 4 ; 3) = 7.
format Journal
author S. Buada
D. Samana
V. Longani
spellingShingle S. Buada
D. Samana
V. Longani
The tripartite Ramsey numbers rt(C4;2) and rt(C4;3)
author_facet S. Buada
D. Samana
V. Longani
author_sort S. Buada
title The tripartite Ramsey numbers rt(C4;2) and rt(C4;3)
title_short The tripartite Ramsey numbers rt(C4;2) and rt(C4;3)
title_full The tripartite Ramsey numbers rt(C4;2) and rt(C4;3)
title_fullStr The tripartite Ramsey numbers rt(C4;2) and rt(C4;3)
title_full_unstemmed The tripartite Ramsey numbers rt(C4;2) and rt(C4;3)
title_sort tripartite ramsey numbers rt(c4;2) and rt(c4;3)
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923085360&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/45725
_version_ 1681422798794260480