การคาดการณ์พื้นที่เสี่ยงต่อการเกิดดินถล่มในจังหวัดอุตรดิตถ์โดยประยุกต์ใช้เทคโนโลยีภูมิสารสนเทศร่วมกับโครงข่ายประสาทเทียม

The study had 2 main objectives: to develop the demonstrative model of Artificial Neural Network (ANN) which suitable for the predictions landslide susceptibility areas in Uttaradit Province and to apply Geo-Informatics technology and ANN in predicting the susceptibility areas. The research methodol...

Full description

Saved in:
Bibliographic Details
Main Author: วิภา อินเรือง
Other Authors: ทวี ชัยพิมลผลิน
Format: Theses and Dissertations
Language:Thai
Published: เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ 2018
Subjects:
Online Access:http://cmuir.cmu.ac.th/jspui/handle/6653943832/45985
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: Thai
id th-cmuir.6653943832-45985
record_format dspace
spelling th-cmuir.6653943832-459852018-04-04T08:26:36Z การคาดการณ์พื้นที่เสี่ยงต่อการเกิดดินถล่มในจังหวัดอุตรดิตถ์โดยประยุกต์ใช้เทคโนโลยีภูมิสารสนเทศร่วมกับโครงข่ายประสาทเทียม The Prediction of Landslides Susceptibility Areas in Uttaradit Province by Applying Geo-Informatics Technology with an Artificial Neural Network วิภา อินเรือง ทวี ชัยพิมลผลิน ดินถล่ม เทคโนโลยี่ภูมิสารสนเทศ โครงข่ายประสาทเทียม The study had 2 main objectives: to develop the demonstrative model of Artificial Neural Network (ANN) which suitable for the predictions landslide susceptibility areas in Uttaradit Province and to apply Geo-Informatics technology and ANN in predicting the susceptibility areas. The research methodology included 1) The classification of selected landslide areas by satellite imagery 2) The analysis of affective factors of landslides 3) The development of the fundamental ANN model by comparison learning algorithms between LM and BR and the testing of the number of hidden nodes from 1-2n+1 4) The further development of ANN model, which will be expanded in 5 factors; (a) the comparison between real number and rang number of the factors (slope, elevation, rainfall, land use, watershed classification, distance from water and distance from faults), (b) the prescription of the break-point of slope factor 16.70 degrees, (c) the comparison of input factor between 5 factors and 7 factors , (d) the comparisons of the testing results both pre and post corrections of grid size from the satellite data and (e) the comparison of the learning algorithms between LM and BR and number of hidden nodes 5) Use the best results of studied model to predict the landslides susceptibility areas. The study has shown that the most affective factors to landslides consist of slope, elevation, rainfall, distance from water and distance from faults. The development of the fundamental ANN has found that learning algorithm LM regarding to the 2 hidden nodes, is the most appropriate method to predict the landslides susceptibility areas with the least error of statistic value. Moreover, the development of ANN models has also found that the most effective factors are included of, the testing process of real number, the experimental of designated the break-point of landslide 16.70 degrees, the testing process by using 5 factors and the testing after resolving grid size from the satellite data. However, the comparison learning algorithms between LM and BR has shown that the LM is more effective than BR and the most effective number of hidden nodes is equal to the number of input variables. The results of landslide prediction has shown that the most susceptibility areas cover the north of Lap Lae and Muang district, and some parts of Thapla district where the devastated landslide had occurred in 2006. 2018-04-04T08:26:36Z 2018-04-04T08:26:36Z 2557-09 Thesis http://cmuir.cmu.ac.th/jspui/handle/6653943832/45985 th เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language Thai
topic ดินถล่ม
เทคโนโลยี่ภูมิสารสนเทศ
โครงข่ายประสาทเทียม
spellingShingle ดินถล่ม
เทคโนโลยี่ภูมิสารสนเทศ
โครงข่ายประสาทเทียม
วิภา อินเรือง
การคาดการณ์พื้นที่เสี่ยงต่อการเกิดดินถล่มในจังหวัดอุตรดิตถ์โดยประยุกต์ใช้เทคโนโลยีภูมิสารสนเทศร่วมกับโครงข่ายประสาทเทียม
description The study had 2 main objectives: to develop the demonstrative model of Artificial Neural Network (ANN) which suitable for the predictions landslide susceptibility areas in Uttaradit Province and to apply Geo-Informatics technology and ANN in predicting the susceptibility areas. The research methodology included 1) The classification of selected landslide areas by satellite imagery 2) The analysis of affective factors of landslides 3) The development of the fundamental ANN model by comparison learning algorithms between LM and BR and the testing of the number of hidden nodes from 1-2n+1 4) The further development of ANN model, which will be expanded in 5 factors; (a) the comparison between real number and rang number of the factors (slope, elevation, rainfall, land use, watershed classification, distance from water and distance from faults), (b) the prescription of the break-point of slope factor 16.70 degrees, (c) the comparison of input factor between 5 factors and 7 factors , (d) the comparisons of the testing results both pre and post corrections of grid size from the satellite data and (e) the comparison of the learning algorithms between LM and BR and number of hidden nodes 5) Use the best results of studied model to predict the landslides susceptibility areas. The study has shown that the most affective factors to landslides consist of slope, elevation, rainfall, distance from water and distance from faults. The development of the fundamental ANN has found that learning algorithm LM regarding to the 2 hidden nodes, is the most appropriate method to predict the landslides susceptibility areas with the least error of statistic value. Moreover, the development of ANN models has also found that the most effective factors are included of, the testing process of real number, the experimental of designated the break-point of landslide 16.70 degrees, the testing process by using 5 factors and the testing after resolving grid size from the satellite data. However, the comparison learning algorithms between LM and BR has shown that the LM is more effective than BR and the most effective number of hidden nodes is equal to the number of input variables. The results of landslide prediction has shown that the most susceptibility areas cover the north of Lap Lae and Muang district, and some parts of Thapla district where the devastated landslide had occurred in 2006.
author2 ทวี ชัยพิมลผลิน
author_facet ทวี ชัยพิมลผลิน
วิภา อินเรือง
format Theses and Dissertations
author วิภา อินเรือง
author_sort วิภา อินเรือง
title การคาดการณ์พื้นที่เสี่ยงต่อการเกิดดินถล่มในจังหวัดอุตรดิตถ์โดยประยุกต์ใช้เทคโนโลยีภูมิสารสนเทศร่วมกับโครงข่ายประสาทเทียม
title_short การคาดการณ์พื้นที่เสี่ยงต่อการเกิดดินถล่มในจังหวัดอุตรดิตถ์โดยประยุกต์ใช้เทคโนโลยีภูมิสารสนเทศร่วมกับโครงข่ายประสาทเทียม
title_full การคาดการณ์พื้นที่เสี่ยงต่อการเกิดดินถล่มในจังหวัดอุตรดิตถ์โดยประยุกต์ใช้เทคโนโลยีภูมิสารสนเทศร่วมกับโครงข่ายประสาทเทียม
title_fullStr การคาดการณ์พื้นที่เสี่ยงต่อการเกิดดินถล่มในจังหวัดอุตรดิตถ์โดยประยุกต์ใช้เทคโนโลยีภูมิสารสนเทศร่วมกับโครงข่ายประสาทเทียม
title_full_unstemmed การคาดการณ์พื้นที่เสี่ยงต่อการเกิดดินถล่มในจังหวัดอุตรดิตถ์โดยประยุกต์ใช้เทคโนโลยีภูมิสารสนเทศร่วมกับโครงข่ายประสาทเทียม
title_sort การคาดการณ์พื้นที่เสี่ยงต่อการเกิดดินถล่มในจังหวัดอุตรดิตถ์โดยประยุกต์ใช้เทคโนโลยีภูมิสารสนเทศร่วมกับโครงข่ายประสาทเทียม
publisher เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
publishDate 2018
url http://cmuir.cmu.ac.th/jspui/handle/6653943832/45985
_version_ 1681421666726445056