Structural dynamics and binding free energy of neral-cyclodextrins inclusion complexes: Molecular dynamics simulation
© 2017 Informa UK Limited, trading as Taylor & Francis Group. The inclusion complexation of neral, a cis-isomer of citral found in lemon grass (Cymbopogon citratus Stapf), and four different types of cyclodextrin (β-cyclodextrin (βCD), 2,6-dimethyl-βCD (2,6DMβCD), 2,6-dihydroxypropyl-βCD (2,6D...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85026354006&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/46566 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | © 2017 Informa UK Limited, trading as Taylor & Francis Group. The inclusion complexation of neral, a cis-isomer of citral found in lemon grass (Cymbopogon citratus Stapf), and four different types of cyclodextrin (β-cyclodextrin (βCD), 2,6-dimethyl-βCD (2,6DMβCD), 2,6-dihydroxypropyl-βCD (2,6DHPβCD), and 2-hydroxypropyl-βCD (2HPβCD)) was investigated using molecular docking and molecular dynamics simulation approaches. The simulations show that the neral/ CD inclusion complex could be formed in an aqueous solution with a 1:1 ratio. Three possible binding orientations were assessed for the encapsulation of neral ( 1 neral, 7 neral, and u neral) inside the hydrophobic interior of the host molecule. The u neral, in which both aldehyde and alkyl terminals point outward on the secondary rim of the CD, was observed to be the most preferential conformation in all neral/CD complexes. The theoretical calculations of the binding ability of the host-guest inclusion complexes agreed well with the experimental data, thereby supporting that the neral could bind inside the hydrophobic cavity of all CDs with nearly the same potency. |
---|