Integrating Community Context Information Into a Reliably Weighted Collaborative Filtering System Using Soft Ratings

IEEE In this paper, we aim at developing a new collaborative filtering recommender system using soft ratings, which is capable of dealing with both imperfect information about user preferences and the sparsity problem. On the one hand, Dempster-Shafer theory is employed for handling the imperfect in...

Full description

Saved in:
Bibliographic Details
Main Authors: Van Doan Nguyen, Van Nam Huynh, Songsak Sriboonchitta
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028913432&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/46648
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:IEEE In this paper, we aim at developing a new collaborative filtering recommender system using soft ratings, which is capable of dealing with both imperfect information about user preferences and the sparsity problem. On the one hand, Dempster-Shafer theory is employed for handling the imperfect information due to its advantage in providing not only a flexible framework for modeling uncertain, imprecise, and incomplete information, but also powerful operations for fusion of information from multiple sources. On the other hand, in dealing with the sparsity problem, community context information that is extracted from the social network containing all users is used for predicting unprovided ratings. As predicted ratings are not a hundred percent accurate, while the provided ratings are actually evaluated by users, we also develop a new method for calculating user-user similarities, in which provided ratings are considered to be more significant than predicted ones. In the experiments, the developed recommender system is tested on two different data sets; and the experiment results indicate that this system is more effective than CoFiDS, a typical recommender system offering soft ratings.