Applying shuffled frog leaping algorithm to find optimal cost driver combination weights in abc cost driver replacement

Activity-based costing (ABC) is a well-known approach to allocate overhead costs to cost objects with higher accuracy than traditional costing approaches. High accuracy in allocating the overhead costs commonly requires a large number of cost drivers which is very time-consuming and expensive in dat...

Full description

Saved in:
Bibliographic Details
Main Authors: T. Thaiupathump, R. Chompu-Inwai
Format: Conference Proceeding
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85040905986&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/46724
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:Activity-based costing (ABC) is a well-known approach to allocate overhead costs to cost objects with higher accuracy than traditional costing approaches. High accuracy in allocating the overhead costs commonly requires a large number of cost drivers which is very time-consuming and expensive in data-related costs, such as collection, processing, and reporting. In contrast, using too few cost drivers may cause a low level of cost accuracy. The trade-off between the complexity of the ABC method and the product cost accuracy must be carefully considered. The cost-drivers optimization problem focusing on finding an appropriate group of representative cost drivers by considering the balance between the benefits against costs is significant and challenging. A cost driver is normally replaced by only one other cost driver; however, a cost driver may also be replaced by a proper combination of other cost drivers. With the same ABC system complexity, this approach yields a more accurate cost allocation. In this paper, Shuffled Frog Leaping Algorithm (SFLA), a meta-heuristic optimization approach, is applied to find the selected cost drivers and the weights of the combinations of selected cost drivers to be used in replacing the eliminated cost drivers.