Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand

© 2017 Jaksuwan et al. Background: Multidrug/extensively drug-resistant tuberculosis (M/XDR-TB) is a major public health problem, and early detection is important for preventing its spread. This study aimed to demonstrate the distribution of genetic site mutation associated with drug resistance in M...

Full description

Saved in:
Bibliographic Details
Main Authors: Risara Jaksuwan, Prasit Tharavichikul, Jayanton Patumanond, Charoen Chuchottaworn, Sakarin Chanwong, Saijai Smithtikarn, Jongkolnee Settakorn
Format: Journal
Published: 2018
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020869486&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/47136
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-47136
record_format dspace
spelling th-cmuir.6653943832-471362018-04-25T07:23:26Z Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand Risara Jaksuwan Prasit Tharavichikul Jayanton Patumanond Charoen Chuchottaworn Sakarin Chanwong Saijai Smithtikarn Jongkolnee Settakorn © 2017 Jaksuwan et al. Background: Multidrug/extensively drug-resistant tuberculosis (M/XDR-TB) is a major public health problem, and early detection is important for preventing its spread. This study aimed to demonstrate the distribution of genetic site mutation associated with drug resistance in M/XDR-TB in the northern Thai population. Methods: Thirty-four clinical MTB isolates from M/XDR-TB patients in the upper northern region of Thailand, who had been identified for drug susceptibility using the indirect agar proportion method from 2005 to 2012, were examined for genetic site mutations of katG, inhA, and ahpC for isoniazid (INH) drug resistance and rpoB for rifampicin (RIF) drug resistance. The variables included the baseline characteristics of the resistant gene, genetic site mutations, and drug susceptibility test results. Results: All 34 isolates resisted both INH and RIF. Thirty-two isolates (94.1%) showed a mutation of at least 1 codon for katG, inhA, and ahpC genes. Twenty-eight isolates (82.4%) had a mutation of at least 1 codon of rpoB gene. The katG, inhA, ahpC, and rpoB mutations were detected in 20 (58.7%), 27 (79.4%), 13 (38.2%), and 28 (82.3%) of 34 isolates. The 3 most common mutation codons were katG 315 (11/34, 35.3%), inhA 14 (11/34, 32.4%), and inhA 114 (11/34, 32.4%). For this population, the best genetic mutation test panels for INH resistance included 8 codons (katG 310, katG 340, katG 343, inhA 14, inhA 84, inhA 86, inhA 114, and ahpC 75), and for RIF resistance included 6 codons (rpoB 445, rpoB 450, rpoB 464, rpoB 490, rpoB 507, and rpoB 508) with a sensitivity of 94.1% and 82.4%, respectively. Conclusion: The genetic mutation sites for drug resistance in M/XDR-TB are quite variable. The distribution of these mutations in a certain population must be studied before developing the specific mutation test panels for each area. The results of this study can be applied for further molecular M/XDR-TB diagnosis in the upper northern region of Thailand. 2018-04-25T07:23:26Z 2018-04-25T07:23:26Z 2017-06-10 Journal 11786973 2-s2.0-85020869486 10.2147/IDR.S130203 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020869486&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/47136
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2017 Jaksuwan et al. Background: Multidrug/extensively drug-resistant tuberculosis (M/XDR-TB) is a major public health problem, and early detection is important for preventing its spread. This study aimed to demonstrate the distribution of genetic site mutation associated with drug resistance in M/XDR-TB in the northern Thai population. Methods: Thirty-four clinical MTB isolates from M/XDR-TB patients in the upper northern region of Thailand, who had been identified for drug susceptibility using the indirect agar proportion method from 2005 to 2012, were examined for genetic site mutations of katG, inhA, and ahpC for isoniazid (INH) drug resistance and rpoB for rifampicin (RIF) drug resistance. The variables included the baseline characteristics of the resistant gene, genetic site mutations, and drug susceptibility test results. Results: All 34 isolates resisted both INH and RIF. Thirty-two isolates (94.1%) showed a mutation of at least 1 codon for katG, inhA, and ahpC genes. Twenty-eight isolates (82.4%) had a mutation of at least 1 codon of rpoB gene. The katG, inhA, ahpC, and rpoB mutations were detected in 20 (58.7%), 27 (79.4%), 13 (38.2%), and 28 (82.3%) of 34 isolates. The 3 most common mutation codons were katG 315 (11/34, 35.3%), inhA 14 (11/34, 32.4%), and inhA 114 (11/34, 32.4%). For this population, the best genetic mutation test panels for INH resistance included 8 codons (katG 310, katG 340, katG 343, inhA 14, inhA 84, inhA 86, inhA 114, and ahpC 75), and for RIF resistance included 6 codons (rpoB 445, rpoB 450, rpoB 464, rpoB 490, rpoB 507, and rpoB 508) with a sensitivity of 94.1% and 82.4%, respectively. Conclusion: The genetic mutation sites for drug resistance in M/XDR-TB are quite variable. The distribution of these mutations in a certain population must be studied before developing the specific mutation test panels for each area. The results of this study can be applied for further molecular M/XDR-TB diagnosis in the upper northern region of Thailand.
format Journal
author Risara Jaksuwan
Prasit Tharavichikul
Jayanton Patumanond
Charoen Chuchottaworn
Sakarin Chanwong
Saijai Smithtikarn
Jongkolnee Settakorn
spellingShingle Risara Jaksuwan
Prasit Tharavichikul
Jayanton Patumanond
Charoen Chuchottaworn
Sakarin Chanwong
Saijai Smithtikarn
Jongkolnee Settakorn
Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand
author_facet Risara Jaksuwan
Prasit Tharavichikul
Jayanton Patumanond
Charoen Chuchottaworn
Sakarin Chanwong
Saijai Smithtikarn
Jongkolnee Settakorn
author_sort Risara Jaksuwan
title Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand
title_short Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand
title_full Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand
title_fullStr Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand
title_full_unstemmed Genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern Thailand
title_sort genotypic distribution of multidrug-resistant and extensively drug-resistant tuberculosis in northern thailand
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020869486&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/47136
_version_ 1681423004790161408