Some renormings with the stable fixed point property
In this paper, we prove that for any number λ < (√33-3)/2, any separable space X can be renormed in such a way that X satisfies the weak fixed point property for non-expansive mappings and this property is inherited for any other isomorphic space Y such that the Banach-Mazur distance between X...
Saved in:
Main Authors: | T. Domínguez Benavides, S. Phothi |
---|---|
格式: | 雜誌 |
出版: |
2018
|
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84890239898&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/47362 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
相似書籍
-
Some renormings with the stable fixed point property
由: T. Domínguez Benavides, et al.
出版: (2018) -
Some fixed point theorems
由: Patana Chotipanich
出版: (2014) -
The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings
由: S. Dhompongsa, et al.
出版: (2018) -
The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings
由: Dhompongsa S., et al.
出版: (2014) -
An asymptotic property of Schachermayer's space under renorming
由: Kutzarova, D., et al.
出版: (2014)