ZnTe semiconductor-polymer gel composited electrolyte for conversion of solar energy

Nanostructured cubic p-type ZnTe for dye sensitized solar cells (DSSCs) was synthesized from 1: 1 molar ratio of Zn: Te by 600 W and 900 W microwave plasma for 30 min. In this research, their green emissions were detected at the same wavelengths of 563 nm, the energy gap (Eg) at 2.24 eV, and three R...

Full description

Saved in:
Bibliographic Details
Main Authors: Promnopas W., Thongtem T., Thongtem S.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-84893156938&partnerID=40&md5=4ec3b1f1d93542d7b8946d6c9529fc49
http://cmuir.cmu.ac.th/handle/6653943832/4747
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
Description
Summary:Nanostructured cubic p-type ZnTe for dye sensitized solar cells (DSSCs) was synthesized from 1: 1 molar ratio of Zn: Te by 600 W and 900 W microwave plasma for 30 min. In this research, their green emissions were detected at the same wavelengths of 563 nm, the energy gap (Eg) at 2.24 eV, and three Raman shifts at 205, 410, and 620 cm-1. The nanocomposited electrolyte of quasisolid state ZnO-DSSCs was in correlation with the increase in the JSC, VOC, fill factor (ff), and efficiency (η) by increasing the wt% of ZnTe-GPE (gel polymer electrolyte) to an optimum value and decreased afterwards. The optimal ZnO-DSSC performance was achieved for 0.20 wt% ZnTe-GPE with the highest photoelectronic energy conversion efficiency at 174.7% with respect to that of the GPE without doping of p-type ZnTe. © 2014 Wonchai Promnopas et al.