Totally geodesic surfaces and quadratic forms
Let M be a compact, connected, irreducible, orientable 3-manifold with torus boundary. A closed, orientable, immersed, incompressible surface F in M with no incompressible annulus joining F and ∂M compresses in at most finitely many Dehn fillings M(α). It is known that there is no universal upper bo...
Saved in:
主要作者: | Pradthana Jaipong |
---|---|
格式: | 雜誌 |
出版: |
2018
|
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84888213662&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/47520 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
相似書籍
-
Totally geodesic surfaces and quadratic forms
由: Pradthana Jaipong
出版: (2018) -
Computing smooth quasi-geodesic distance field (QGDF) with quadratic programming
由: Cao, Luming, et al.
出版: (2021) -
Discrete geodesic graph (DGG) for computing geodesic distances on polyhedral surfaces
由: Wang, Xiaoning, et al.
出版: (2018) -
Quadratic forms
由: LIM KAY JIN
出版: (2010) -
COMPUTATION OF GEODESIC CURVES ON DISCRETE SURFACES
由: ONG CHEE CHIN
出版: (2021)