MnTe semiconductor-sensitized boron-doped TiO<inf>2</inf>and ZnO photoelectrodes for solar cell applications
We report a new tailoring MnTe semiconductor-sensitized solar cells (MnTe SSCs) using successive ionic layer adsorption and reaction (SILAR) technique. X-ray diffraction and SAED patterns reveal the orthorhombic MnTe and cubic MnTe 2 phases were grown on boron-doped TiO 2 and ZnO nanoparticles. The...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84879553430&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/47683 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-47683 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-476832018-04-25T08:42:46Z MnTe semiconductor-sensitized boron-doped TiO<inf>2</inf>and ZnO photoelectrodes for solar cell applications Auttasit Tubtimtae Khanittha Arthayakul Bussayanee Teekwang Kritsada Hongsith Supab Choopun We report a new tailoring MnTe semiconductor-sensitized solar cells (MnTe SSCs) using successive ionic layer adsorption and reaction (SILAR) technique. X-ray diffraction and SAED patterns reveal the orthorhombic MnTe and cubic MnTe 2 phases were grown on boron-doped TiO 2 and ZnO nanoparticles. The diameter of MnTe NPs ranged from 15 to 30nm on both B-doped metal oxide structures. The energy gaps of metal oxide become narrower after boron doping, which have an advantage for enhancing the light absorption from UV to visible region. Also, the energy gap of MnTe NPs on B-doped metal oxide was determined ~1.27-1.30eV. The best power conversion efficiency (η) of 0.033% and 0.030% yielded from B-doped TiO 2 /MnTe(7) and B-doped ZnO/MnTe(9), respectively. The reduction in power conversion efficiency by 103% and 91% was due to the absence of boron doping into TiO 2 and ZnO nanostructures, respectively. © 2013. 2018-04-25T08:42:46Z 2018-04-25T08:42:46Z 2013-09-01 Journal 10957103 00219797 2-s2.0-84879553430 10.1016/j.jcis.2013.05.038 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84879553430&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/47683 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
description |
We report a new tailoring MnTe semiconductor-sensitized solar cells (MnTe SSCs) using successive ionic layer adsorption and reaction (SILAR) technique. X-ray diffraction and SAED patterns reveal the orthorhombic MnTe and cubic MnTe 2 phases were grown on boron-doped TiO 2 and ZnO nanoparticles. The diameter of MnTe NPs ranged from 15 to 30nm on both B-doped metal oxide structures. The energy gaps of metal oxide become narrower after boron doping, which have an advantage for enhancing the light absorption from UV to visible region. Also, the energy gap of MnTe NPs on B-doped metal oxide was determined ~1.27-1.30eV. The best power conversion efficiency (η) of 0.033% and 0.030% yielded from B-doped TiO 2 /MnTe(7) and B-doped ZnO/MnTe(9), respectively. The reduction in power conversion efficiency by 103% and 91% was due to the absence of boron doping into TiO 2 and ZnO nanostructures, respectively. © 2013. |
format |
Journal |
author |
Auttasit Tubtimtae Khanittha Arthayakul Bussayanee Teekwang Kritsada Hongsith Supab Choopun |
spellingShingle |
Auttasit Tubtimtae Khanittha Arthayakul Bussayanee Teekwang Kritsada Hongsith Supab Choopun MnTe semiconductor-sensitized boron-doped TiO<inf>2</inf>and ZnO photoelectrodes for solar cell applications |
author_facet |
Auttasit Tubtimtae Khanittha Arthayakul Bussayanee Teekwang Kritsada Hongsith Supab Choopun |
author_sort |
Auttasit Tubtimtae |
title |
MnTe semiconductor-sensitized boron-doped TiO<inf>2</inf>and ZnO photoelectrodes for solar cell applications |
title_short |
MnTe semiconductor-sensitized boron-doped TiO<inf>2</inf>and ZnO photoelectrodes for solar cell applications |
title_full |
MnTe semiconductor-sensitized boron-doped TiO<inf>2</inf>and ZnO photoelectrodes for solar cell applications |
title_fullStr |
MnTe semiconductor-sensitized boron-doped TiO<inf>2</inf>and ZnO photoelectrodes for solar cell applications |
title_full_unstemmed |
MnTe semiconductor-sensitized boron-doped TiO<inf>2</inf>and ZnO photoelectrodes for solar cell applications |
title_sort |
mnte semiconductor-sensitized boron-doped tio<inf>2</inf>and zno photoelectrodes for solar cell applications |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84879553430&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/47683 |
_version_ |
1681423107469869056 |