Regularity in semigroups of transformations with invariant sets

Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intr...

Full description

Saved in:
Bibliographic Details
Main Authors: Wanida Choomanee, Preeyanuch Honyam, Jintana Sanwong
Format: Journal
Published: 2018
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882965960&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/47694
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-47694
record_format dspace
spelling th-cmuir.6653943832-476942018-04-25T08:42:56Z Regularity in semigroups of transformations with invariant sets Wanida Choomanee Preeyanuch Honyam Jintana Sanwong Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intra-regular elements of S(X, Y ) and consider the relationships between these elements. Moreover, we count the number of left regular elements of S(X, Y ) when X is a finite set. © 2013 Academic Publications, Ltd. 2018-04-25T08:42:56Z 2018-04-25T08:42:56Z 2013-08-30 Journal 13143395 13118080 2-s2.0-84882965960 10.12732/ijpam.v87i1.9 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882965960&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/47694
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intra-regular elements of S(X, Y ) and consider the relationships between these elements. Moreover, we count the number of left regular elements of S(X, Y ) when X is a finite set. © 2013 Academic Publications, Ltd.
format Journal
author Wanida Choomanee
Preeyanuch Honyam
Jintana Sanwong
spellingShingle Wanida Choomanee
Preeyanuch Honyam
Jintana Sanwong
Regularity in semigroups of transformations with invariant sets
author_facet Wanida Choomanee
Preeyanuch Honyam
Jintana Sanwong
author_sort Wanida Choomanee
title Regularity in semigroups of transformations with invariant sets
title_short Regularity in semigroups of transformations with invariant sets
title_full Regularity in semigroups of transformations with invariant sets
title_fullStr Regularity in semigroups of transformations with invariant sets
title_full_unstemmed Regularity in semigroups of transformations with invariant sets
title_sort regularity in semigroups of transformations with invariant sets
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882965960&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/47694
_version_ 1681423109605818368