Strong convergence theorems for a sequence of nonexpansive mappings with gauge functions
In this paper, we first prove a path convergence theorem for a nonexpansive mapping in a reflexive and strictly convex Banach space which has a uniformly Gâteaux differentiable norm and admits the duality mapping jφ, where φ is a gauge function on [0, ∞). Using this result, strong convergence theore...
محفوظ في:
المؤلفون الرئيسيون: | Prasit Cholamjiak, Yeol Je Cho, Suthep Suantai |
---|---|
التنسيق: | دورية |
منشور في: |
2018
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84878464545&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/47873 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Strong convergence theorems for a sequence of nonexpansive mappings with gauge functions
بواسطة: Prasit Cholamjiak, وآخرون
منشور في: (2018) -
Halpern's iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces
بواسطة: Suthep Suantai, وآخرون
منشور في: (2018) -
Weak and strong convergence theorems for a finite family of generalized asymptotically quasi-nonexpansive mappings
بواسطة: Watcharaporn Cholamjiak, وآخرون
منشور في: (2018) -
Weak and strong convergence theorems for a finite family of generalized asymptotically quasi-nonexpansive mappings
بواسطة: Watcharaporn Cholamjiak, وآخرون
منشور في: (2018) -
Strong convergence theorems of a finite family of quasi-nonexpansive and Lipschitz multi-valued mappings
بواسطة: Suantai S., وآخرون
منشور في: (2015)