Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing

© 2017, Springer Science+Business Media, LLC. Biodegradable blends of poly(l-lactide) (PLL) toughened with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer and compatibilized with a purpose-designed poly(l-lactide-co-caprolactone) (PLLCL) copolymer were prepared. Both 2-component...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kanyarat Suthapakti, Robert Molloy, Winita Punyodom, Kanarat Nalampang, Thanawadee Leejarkpai, Paul D. Topham, Brian J. Tighe
格式: 雜誌
出版: 2018
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85024500610&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/48393
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:© 2017, Springer Science+Business Media, LLC. Biodegradable blends of poly(l-lactide) (PLL) toughened with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer and compatibilized with a purpose-designed poly(l-lactide-co-caprolactone) (PLLCL) copolymer were prepared. Both 2-component (PLL/TPU) and 3-component (PLL/TPU/PLLCL) blends of various compositions were prepared by melt mixing, hot-pressed into thin films and their properties tested. The results showed that, although the TPU could toughen the PLL, the blends were immiscible leading to phase separation with the TPU domains distributed in the PLL matrix. However, addition of the PLLCL copolymer could partially compatibilize the blend by improving the interfacial adhesion between the two phases. Biodegradability testing showed that the blends were biodegradable and that the PLLCL copolymer could increase the rate of biodegradation under controlled composting conditions. The 3-component blend of composition PLL/TPU/PLLCL = 90/10/10 parts by weight was found to exhibit the best all-round properties.