Theoretical and experimental studies on inclusion complexes of pinostrobin and β-cyclodextrins
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. Pinostrobin (PNS) belongs to the flavanone subclass of flavonoids which shows several biological activities such as anti-inflammatory, anti-cancerogenic, anti-viral and anti-oxidative effects. Similar to other flavonoids, PNS has a quite low...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044082110&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/48522 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Pinostrobin (PNS) belongs to the flavanone subclass of flavonoids which shows several biological activities such as anti-inflammatory, anti-cancerogenic, anti-viral and anti-oxidative effects. Similar to other flavonoids, PNS has a quite low water solubility. The purpose of this work is to improve the solubility and the biological activities of PNS by forming inclusion complexes with β-cyclodextrin(βCD)and its derivatives, heptakis-(2,6-di-O-methyl)-β-cyclodextrin(2,6-DMβCD)and (2-hydroxypropyl)-β-cyclodextrin (HPβCD). The A L -typediagram of the phase solubility studies of PNS exhibited the formed inclusion complexes with the 1:1 molar ratio. Inclusion complexes were prepared by the freeze-drying method and were characterized by differential scanning calorimetry (DSC). Two-dimensional nuclear magnetic resonance (2D-NMR) and steered molecular dynamics (SMD) simulation revealed two different binding modes of PNS, i.e., its phenyl- (P-PNS) and chromone- (C-PNS) rings preferably inserted into the cavity of βCD derivatives whilst only one orientation of PNS, where the C-PNS ring is inside the cavity, was detected in the case of the parental βCD. All PNS/βCDs complexes had a higher dissolution rate than free PNS. Both PNS and its complexes significantly exerted a lowering effect on the IL-6 secretion in LPS-stimulated macrophages and showed a moderate cytotoxic effect against MCF-7 and HeLa cancer cell lines in vitro. |
---|