Lim's theorems for multivalued mappings in CAT(0) spaces

Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spa...

Full description

Saved in:
Bibliographic Details
Main Authors: Dhompongsa S., Kaewkhao A., Panyanak B.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-27744436289&partnerID=40&md5=7a28ec88ae27b3f21b25105f4a692f49
http://cmuir.cmu.ac.th/handle/6653943832/4891
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-4891
record_format dspace
spelling th-cmuir.6653943832-48912014-08-30T02:55:55Z Lim's theorems for multivalued mappings in CAT(0) spaces Dhompongsa S. Kaewkhao A. Panyanak B. Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spaces, this is a result of Lim [On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980) 421-430]. The related result for unbounded ℝ-trees is given. © 2005 Elsevier Inc. All rights reserved. 2014-08-30T02:55:55Z 2014-08-30T02:55:55Z 2005 Article 0022247X 10.1016/j.jmaa.2005.03.055 http://www.scopus.com/inward/record.url?eid=2-s2.0-27744436289&partnerID=40&md5=7a28ec88ae27b3f21b25105f4a692f49 http://cmuir.cmu.ac.th/handle/6653943832/4891 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spaces, this is a result of Lim [On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980) 421-430]. The related result for unbounded ℝ-trees is given. © 2005 Elsevier Inc. All rights reserved.
format Article
author Dhompongsa S.
Kaewkhao A.
Panyanak B.
spellingShingle Dhompongsa S.
Kaewkhao A.
Panyanak B.
Lim's theorems for multivalued mappings in CAT(0) spaces
author_facet Dhompongsa S.
Kaewkhao A.
Panyanak B.
author_sort Dhompongsa S.
title Lim's theorems for multivalued mappings in CAT(0) spaces
title_short Lim's theorems for multivalued mappings in CAT(0) spaces
title_full Lim's theorems for multivalued mappings in CAT(0) spaces
title_fullStr Lim's theorems for multivalued mappings in CAT(0) spaces
title_full_unstemmed Lim's theorems for multivalued mappings in CAT(0) spaces
title_sort lim's theorems for multivalued mappings in cat(0) spaces
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-27744436289&partnerID=40&md5=7a28ec88ae27b3f21b25105f4a692f49
http://cmuir.cmu.ac.th/handle/6653943832/4891
_version_ 1681420322369175552