Lim's theorems for multivalued mappings in CAT(0) spaces
Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spa...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-27744436289&partnerID=40&md5=7a28ec88ae27b3f21b25105f4a692f49 http://cmuir.cmu.ac.th/handle/6653943832/4891 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-4891 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-48912014-08-30T02:55:55Z Lim's theorems for multivalued mappings in CAT(0) spaces Dhompongsa S. Kaewkhao A. Panyanak B. Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spaces, this is a result of Lim [On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980) 421-430]. The related result for unbounded ℝ-trees is given. © 2005 Elsevier Inc. All rights reserved. 2014-08-30T02:55:55Z 2014-08-30T02:55:55Z 2005 Article 0022247X 10.1016/j.jmaa.2005.03.055 http://www.scopus.com/inward/record.url?eid=2-s2.0-27744436289&partnerID=40&md5=7a28ec88ae27b3f21b25105f4a692f49 http://cmuir.cmu.ac.th/handle/6653943832/4891 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
Let X be a complete CAT(0) space. We prove that, if E is a nonempty bounded closed convex subset of X and T : E → K (X) a nonexpansive mapping satisfying the weakly inward condition, i.e., there exists p ∈ E such that αp⊕ (1 - α)Tx ⊂ IE(x) ∀x ∈ E, ∀α ∈ [0, 1], then T has a fixed point. In Banach spaces, this is a result of Lim [On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980) 421-430]. The related result for unbounded ℝ-trees is given. © 2005 Elsevier Inc. All rights reserved. |
format |
Article |
author |
Dhompongsa S. Kaewkhao A. Panyanak B. |
spellingShingle |
Dhompongsa S. Kaewkhao A. Panyanak B. Lim's theorems for multivalued mappings in CAT(0) spaces |
author_facet |
Dhompongsa S. Kaewkhao A. Panyanak B. |
author_sort |
Dhompongsa S. |
title |
Lim's theorems for multivalued mappings in CAT(0) spaces |
title_short |
Lim's theorems for multivalued mappings in CAT(0) spaces |
title_full |
Lim's theorems for multivalued mappings in CAT(0) spaces |
title_fullStr |
Lim's theorems for multivalued mappings in CAT(0) spaces |
title_full_unstemmed |
Lim's theorems for multivalued mappings in CAT(0) spaces |
title_sort |
lim's theorems for multivalued mappings in cat(0) spaces |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-27744436289&partnerID=40&md5=7a28ec88ae27b3f21b25105f4a692f49 http://cmuir.cmu.ac.th/handle/6653943832/4891 |
_version_ |
1681420322369175552 |