Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation

Tourism is one of the key service industries in Thailand, with a 5.27% share of Gross Domestic Product in 2003. Since 2000, international tourist arrivals, particularly those from East Asia, to Thailand have been on a continuous upward trend. Tourism forecasts can be made based on previous observati...

Full description

Saved in:
Bibliographic Details
Main Authors: Chia Lin Chang, Songsak Sriboonchitta, Aree Wiboonpongse
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=57649088127&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/49024
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-49024
record_format dspace
spelling th-cmuir.6653943832-490242018-08-16T02:13:27Z Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation Chia Lin Chang Songsak Sriboonchitta Aree Wiboonpongse Computer Science Mathematics Tourism is one of the key service industries in Thailand, with a 5.27% share of Gross Domestic Product in 2003. Since 2000, international tourist arrivals, particularly those from East Asia, to Thailand have been on a continuous upward trend. Tourism forecasts can be made based on previous observations, so that historical analysis of tourist arrivals can provide a useful understanding of inbound trips and the behaviour of trends in foreign tourist arrivals to Thailand. As tourism is seasonal, a good forecast is required for stakeholders in the industry to manage risk. Previous research on tourism forecasts has typically been based on annual and monthly data analysis, while few past empirical tourism studies using the Box-Jenkins approach have taken account of pre-testing for seasonal unit roots based on Franses [P.H. Franses, Seasonality, nonstationarity and the forecasting of monthly time series, International Journal of Forecasting 7 (1991) 199-208] and Beaulieu and Miron [J.J. Beaulieu, J.A. Miron, Seasonal unit roots in aggregate U.S. data, Journal of Econometrics 55 (1993) 305-328] framework. An analysis of the time series of tourism demand, specifically monthly tourist arrivals from six major countries in East Asia to Thailand, from January 1971 to December 2005 is examined. This paper analyses stationary and non-stationary tourist arrivals series by formally testing for the presence of unit roots and seasonal unit roots prior to estimation, model selection and forecasting. Various Box-Jenkins autoregressive integrated moving average (ARIMA) models and seasonal ARIMA models are estimated, with the tourist arrivals series showing seasonal patterns. The fitted ARIMA and seasonal ARIMA models forecast tourist arrivals from East Asia very well for the period 2006(1)-2008(1). Total monthly and annual forecasts can be obtained through temporal and spatial aggregation. © 2008 IMACS. 2018-08-16T02:08:29Z 2018-08-16T02:08:29Z 2009-01-01 Journal 03784754 2-s2.0-57649088127 10.1016/j.matcom.2008.09.006 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=57649088127&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49024
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Computer Science
Mathematics
spellingShingle Computer Science
Mathematics
Chia Lin Chang
Songsak Sriboonchitta
Aree Wiboonpongse
Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation
description Tourism is one of the key service industries in Thailand, with a 5.27% share of Gross Domestic Product in 2003. Since 2000, international tourist arrivals, particularly those from East Asia, to Thailand have been on a continuous upward trend. Tourism forecasts can be made based on previous observations, so that historical analysis of tourist arrivals can provide a useful understanding of inbound trips and the behaviour of trends in foreign tourist arrivals to Thailand. As tourism is seasonal, a good forecast is required for stakeholders in the industry to manage risk. Previous research on tourism forecasts has typically been based on annual and monthly data analysis, while few past empirical tourism studies using the Box-Jenkins approach have taken account of pre-testing for seasonal unit roots based on Franses [P.H. Franses, Seasonality, nonstationarity and the forecasting of monthly time series, International Journal of Forecasting 7 (1991) 199-208] and Beaulieu and Miron [J.J. Beaulieu, J.A. Miron, Seasonal unit roots in aggregate U.S. data, Journal of Econometrics 55 (1993) 305-328] framework. An analysis of the time series of tourism demand, specifically monthly tourist arrivals from six major countries in East Asia to Thailand, from January 1971 to December 2005 is examined. This paper analyses stationary and non-stationary tourist arrivals series by formally testing for the presence of unit roots and seasonal unit roots prior to estimation, model selection and forecasting. Various Box-Jenkins autoregressive integrated moving average (ARIMA) models and seasonal ARIMA models are estimated, with the tourist arrivals series showing seasonal patterns. The fitted ARIMA and seasonal ARIMA models forecast tourist arrivals from East Asia very well for the period 2006(1)-2008(1). Total monthly and annual forecasts can be obtained through temporal and spatial aggregation. © 2008 IMACS.
format Journal
author Chia Lin Chang
Songsak Sriboonchitta
Aree Wiboonpongse
author_facet Chia Lin Chang
Songsak Sriboonchitta
Aree Wiboonpongse
author_sort Chia Lin Chang
title Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation
title_short Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation
title_full Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation
title_fullStr Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation
title_full_unstemmed Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation
title_sort modelling and forecasting tourism from east asia to thailand under temporal and spatial aggregation
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=57649088127&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/49024
_version_ 1681423335638958080